skip to main content

Effect of Current on Mechanical Properties and Microstructure of Aluminum 6061 with Gas Tungsten Arc Welding Process

*Tarmizi Tarmizi  -  Metal Industries Development Center (MIDC), Ministry of Industry, Indonesia
Kevin Daniel Sianturi  -  Department of Metallurgical Engineering, Faculty of Engineering, University of Jenderal Achmad Yani, Indonesia
Irfan Irfan  -  Metal Industries Development Center (MIDC), Ministry of Industry, Indonesia
Open Access Copyright (c) 2020 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan under

Citation Format:
Cover Image

Aluminum 6061 is an aluminum alloy that is widely used in various industrial fields, which heat treatable. However, it can be joined using a welding process. Aluminum joining using the Gas Tungsten Arc Welding (GTAW) process has become the option to produce good quality joints. This research aims to get optimum welding parameters by knowing the mechanical properties and microstructure of the welding results. The GTAW process uses a 25-volt voltage, Argon protective gas flow rate of 15 liters per minute with filler rod ER 5356 with 2.4 mm diameter and electrodes tungsten 2.4 mm in diameter. This process uses a single V butt joint and groove angle of 60° with variations in the current of 100, 110 and 120 A. The results indicate that specimens with a variety of current of 110 A give better results in the absence of defects, have a tensile strength of 152 MPa, and get a hardness value of 87.55 HV, which is the highest compared to the other two specimens. Whereas specimens with the current variation of 100 and 120 A have defects in the weld area. The optimum parameters of the 6061 aluminum GTAW process with a thickness of 6 mm using a current of 110 A bring on better outcomes and mechanical properties than the use of currents of 100 and 120 A.

Fulltext View|Download
Keywords: Gas Tungsten Arc Welding, Aluminum 6061, Flow, Tensile Strength.

Article Metrics:

  1. A. Wibowo, N. P. Aryanto, C. B. Nugroho, and M. Ismail, “Pengaruh Frekuensi Pulse Pengelasan GTAW Pada Aluminium Alloy 6061,” Jurnal Integrasi, vol. 11, no. 1, pp. 59–62, 2019
  2. S. Jokosisworo, “Pengaruh Perbedaan Posisi Pengelasan Terhadap Kekuatan Sambungan T-Joint Pengelasan Fillet Dengan Las FCAW Pada Plat Mild Steel,” KAPAL: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan, vol. 7, no. 2, 2010
  3. L. Andewi, “Pengaruh Variasi Arus Pada Hasil Pengelasan TIG (Tungsten Inert Gas) Terhadap Sifat Fisis Dan Mekanis Pada Alumunium 6061,” Universitas Negeri Semarang, 2016
  4. A. Naufal, S. Jokosisworo, and S. Samuel, “Pengaruh Kuat Arus Listrik Dan Sudut Kampuh V Terhadap Kekuatan Tarik Dan Tekuk Aluminium 5083 Pengelasan GTAW,” Jurnal Teknik Perkapalan, vol. 4, no. 1, 2016
  5. C. S. Jawalkar, S. Kant, and others, “A review on use of aluminium alloys in aircraft components,” i-Manager’s Journal on Material Science, vol. 3, no. 3, p. 33, 2015
  6. H. M. Hajar, F. Zulkifli, M. G. Mohd Sabri, and W. B. Wan Nik, “Protection against corrosion of aluminum alloy in marine environment by lawsonia inermis,” International Journal of Corrosion, vol. 2016, 2016
  7. B. Ertuğ and L. C. Kumruoğlu, “5083 type Al-Mg and 6082 type Al-Mg-Si alloys for ship building,” American Journal of Engineering Research, pp. 146–150, 2015
  8. P. Kula et al., “New possibilities of applications aluminium alloys in transport,” Archives of Metallurgy and Materials, vol. 54, no. 4, pp. 1199–1205, 2009
  9. J. M. Fortain and S. Gadrey, “How to select a suitable shielding gas to improve the performance of MIG and TIG welding of aluminium alloys,” Welding International, vol. 27, no. 12, pp. 936–947, 2013
  10. A. S. Prawira, S. Jokosisworo, and U. Budiarto, “Pengaruh Kuat Arus Listrik dan Travelling Speed terhadap Kekuatan Impact Alumunium 6061 Pengelasan Gas Tungsten Arc Welding (GTAW) dengan Gas Pelindung Argon,” Jurnal Teknik Perkapalan, vol. 7, no. 4, 2019
  11. P. Kumar, K. P. Kolhe, S. J. Morey, C. K. Datta, and others, “Process parameters optimization of an aluminium alloy with pulsed gas tungsten arc welding (GTAW) using gas mixtures,” Materials Sciences and Applications, vol. 2, no. 04, p. 251, 2011
  12. M. Arun and K. Ramachandran, “Effect of welding process on mechanical and metallurgical properties of AA6061 aluminium alloy lap joint,” International Journal of Mechanical Engineering and Research, Research India Publications, vol. 5, no. 1, 2015
  13. M. Dorta-Almenara and M. C. Capace, “Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy,” Revista Facultad de Ingeniería, vol. 25, no. 43, pp. 7–19, 2016
  14. G. Pamungkas, “Pengaruh Variasi Kuat Arus Pengelasan Tungsten Inert Gas (TIG) Terhadap Kekuatan Tarik Dan Struktur Mikro Baja Karbon Medium,” Universitas Lampung, 2016
  15. A. Sarolkar and K. Kolhe, “A Review of (GTAW) Gas Tungsten Arc Welding and its Parameters for Joining Aluminium Alloy,” International Journal for Science and Advance Research In Technology, vol. 3, no. 8, pp. 361–368, 2017
  16. A. K. Lakshminarayanan, V. Balasubramanian, and K. Elangovan, “Effect of welding processes on tensile properties of AA6061 aluminium alloy joints,” The International Journal of Advanced Manufacturing Technology, vol. 40, no. 3–4, pp. 286–296, 2009
  17. M. W. Dewan, M. A. Wahab, and A. M. Okeil, “Influence of weld defects and postweld heat treatment of gas tungsten arc-welded AA-6061-T651 aluminum alloy,” Journal of Manufacturing Science and Engineering, vol. 137, no. 5, 2015
  18. Y. Liang, J. Shen, S. Hu, H. Wang, and J. Pang, “Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG--CMT hybrid welding,” Journal of Materials Processing Technology, vol. 255, pp. 161–174, 2018
  19. L. Singh, R. Singh, N. K. Singh, D. Singh, and P. Singh, “An evaluation of TIG welding parametric influence on tensile strength of 5083 aluminium alloy,” Int. J. Mech. Aerospace, Ind. Mechatronics Eng, vol. 7, no. 11, pp. 1262–1265, 2013
  20. C. W. M. Noor, K. Samo, M. A. Musa, A. M. Muzathik, “The effect of Arc voltage and welding current on mechanical and micro structure properties of 5083-Aluminium Alloy joints used in marine applications,” 2011
  21. C. Prabaharan, P. Venkatachalam, K. Lenin, “Parametric Optimization of Gas tungsten arc welding processes by using factorial design approach,” 2014
  22. P. Mayur, K. M. Pavan, L. S. Sachin, C. A. Chandrashekar, and K. Ajay, “Effect of Welding Current on the Mechanical and Structural Properties of TIG Welded Aluminium Alloy AA-5083,” International Journal of Mechanical Engineering and Research, vol. 3, pp. 431–438, 2013
  23. B. J. Kutelu, S. O. Seidu, G. I. Eghabor, and A. I. Ibitoye, “Review of gtaw welding parameters,” Journal of Minerals and Materials Characterization and Engineering, vol. 6, no. 5, pp. 541–554, 2018
  24. I. P. Almanar, M. H. Hanapi, A. S. Anasyida, and Z. Hussain, “Friction Stir Welding of 6061-T6 Aluminum Alloy,” in Advanced Materials Research, 2012, vol. 501, pp. 145–149
  25. F. Yusof and M. F. Jamaluddin, “6.07 - Welding Defects and Implications on Welded Assemblies,” in Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. Van Tyne, and B. Yilbas, Eds. Oxford: Elsevier, 2014, pp. 125–134
  26. D. AWS, “1.2. 2004,” Structural Welding Code-Aluminium
  27. W. Woo and H. Choo, “Softening behaviour of friction stir welded Al 6061-T6 and Mg AZ31B alloys,” Science and Technology of Welding and Joining, vol. 16, no. 3, pp. 267–272, 2011
  28. M. Warmuzek, “Metallographic techniques for aluminum and its alloys,” Materials Park, OH: ASM International, 2004., pp. 711–751, 2004
  29. Y. Liu et al., “Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding,” Materials Science and Engineering: A, vol. 549, pp. 7–13, 2012
  30. R. T. Wicaksono, S. Suharno, and B. Harjanto, “Pengaruh Kuat Arus Pada Pengelasan Paduan Aluminium 6061 Dengan Menggunakan Metode Las TIG Terhadap Kekerasan Dan Struktur Mikro,” NOZEL Jurnal Pendidikan Teknik Mesin, vol. 1, no. 1, pp. 29–36

Last update:

No citation recorded.

Last update: 2024-05-19 03:54:38

No citation recorded.