skip to main content

The Effect of Tip Clearance Kaplan Ducted Propeller in Offshore Supply Vessel (OSV) on Hydrodynamics

*Arif Winarno orcid scopus  -  Department of Marine Engineering, Hang Tuah University, Jl. Arief Rahman Hakim No.150, Surabaya, Indonesia 60111, Indonesia
Gedhe Angkoso Nur Sofa Sakti  -  Department of Marine Engineering, Hang Tuah University, Jl. Arief Rahman Hakim No.150, Surabaya, Indonesia 60111, Indonesia
Erik Sugianto  -  Department of Marine Engineering, Hang Tuah University, Jl. Arief Rahman Hakim No.150, Surabaya, Indonesia 60111, Indonesia
Open Access Copyright (c) 2024 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

A ducted propeller is a modification of a propeller by adding a duct or nozzle. The purpose of using a ducted propeller is to increase thrust, increase propeller efficiency, and encourage better ship movement. This is suitable for Offshore Supply Vessel (OSV) vessels operating on offshore platforms to support oil drilling activities. In designing a kort nozzle, one of the most important components is the tip clearance, the distance between the edge of the propeller and the inner nozzle. The diameter of the kort nozzle can affect the thrust efficiency of the propeller. Due to the blade momentum theory for ducted propellers, the volume of water passing through the propeller should be as large as possible, with the smallest possible flow velocity. In this study, numerical simulations using the Computational Fluid Dynamics (CFD) method were carried out to determine the effect of tip clearance on thrust and torque on a ducted propeller with a MARIN foil 19A nozzle type and tip clearance of 10 mm, 20 mm, and 30 mm. From all models, the highest thrust and torque values were obtained from the nozzle 19A tip clearance 10 mm model with thrust 367,413 kN and torque 315,338 kNm. The relationship between tip clearance and thrust is inversely proportional; the greater the tip clearance, the smaller the value of thrust, and the same is true with torque.

Fulltext

Article Metrics:

  1. Y. R. Andilolo, P. Manik, and M. Iqbal, “Studi Kasus Kinerja Propeller Kaplan Series Akibat Pengurangan Diameter dan Penambahan End Plate dengan Metode CFD,” Jurnal Teknik Perkapalan, vol. 5, no. 1, pp. 205-213, 2017
  2. G. A. Putra and A. Winarno, “Studi Pengaruh Variasi Bentuk Wave-Piercing Terhadap Hambatan Pada Kapal Katamaran Untuk Meningkatkan Efisiensi Pemakaian Bahan Bakar,” Zona Laut: Jurnal Inovasi Sains dan Teknologi Kelautan, vol. 3, no.1, pp. 24-31, 2022
  3. A. Winarno, G. Ciptadi, A. Iriany, and A. S. Widodo, “Experiment Study of the Resistance on Nusantara Ship Hull Modification with Fishing Boat in Pantura East Java,” International Journal on Engineering Applications, vol. 11, no. 2, pp. 111–120, 2023
  4. A. Winarno, G. Ciptadi, A. Iriany, and A. S. Widodo, “Experimental and Numerical Study of Ship Resistance on the Combination of Traditional Nusantara Fishing Vessel Hull Forms,” International Review of Mechanical Engineering, vol. 17, no.4 , pp. 190–196, 2023
  5. W. Rakhmadi, A. Trimulyono, and M. Iqbal, “Analisa Perbandingan Tipe Kort Nozzle Terhadap Gaya Dorong Propeller Dengan Metode CFD,” Jurnal Teknik Perkapalan, vol. 4, no. 1, pp. 199-208, 2016
  6. D. N. Yunita and A. Winarno, “Analisa Teknis Pengaruh Jumlah Sudu Propeller Bebas Putar Terhadap Gaya Dorong Kapal Tunda DPS IX,” Seminar Nasional Kelautan XIV: Implementasi Hasil Riset Sumber Daya Laut dan Pesisir Dalam Peningkatan Daya Saing Indonesia, 2019
  7. M. F. Rozi, A. Winarno, and M. Riyadi, “Pengaruh Variasi Jarak Poros Propeller Yang Berbeda Pada Kapal Ikan Tradisional KM. Sri Mulyo di Brondong Lamongan,” Seminar Nasional Kelautan XIV: Implementasi Hasil Riset Sumber Daya Laut dan Pesisir Dalam Peningkatan Daya Saing Indonesia, 2019
  8. A. F. Rachmat, A. Trimulyono, and P. Manik, “Analisa Pengaruh Pemasangan Energy Saving Device (ESD) Jenis Mewis Duct Terhadap Thrust Propeller INSEAN E779A Dengan Menggunakan Pendekatan CFD,” Jurnal Teknik Perkapalan, vol. 9, no. 3,pp. 294–302, 2021
  9. M. Oosterveld, “Wake adapted ducted propellers,” Netherlands Ship Model Basin, 1970
  10. C. Negrato, “Prediction of The Performance of Ducted Propellers With BEM and Hybrid RANS-BEM Methods,” Delft University of Technology, 2015
  11. R. M. Khozin, “Pengaruh Variasi Pitch Terhadap Kinerja Ducted Contra Rotating Propeller Dengan Pendekatan CFD,” Institut Teknologi Sepuluh November, 2016
  12. H. Schneekluth and V. Betram, “Ship Design for Efficiency and Economy,” Oxford : Butter Worth Heinmann, 1998
  13. M. D. Maulana, A. F. Zakki, and P. Manik, “Analisa Performance Propeller Tipe KA4-70 dengan Variasi Flap Angle End Plate dan Sudut Rake,” Jurnal Teknik Perkapalan, vol. 8, no. 1, pp. 11–20, 2020
  14. D. Yongle, S. Baowei, and W. Peng, “Numerical Investigation of Tip Clearance Effects on The Performance of Ducted Propeller,” Int. J. Nav. Archit. Ocean Eng., vol. 7, pp. 795-804, 2015
  15. M. A. R. Hermawan and A. Winarno, “Kajian Teknis Propeller Tipe B - Series Dan Kaplan Dengan Variasi Sudut Rake Pada Kapal Offshore Supply Vessel 80 (OSV 80),” Zona Laut: Jurnal Inovasi Sains dan Teknologi Kelautan, vol. 4, no. 3, pp. 309-318, 2023
  16. W. N. R. Ahmidilla, “Analisa Penerapan Kort Nozzle Untuk Propeller B4-40 Kapal Offshore Supply Vessel (OSV),” Univeristas Hang Tuah, 2024
  17. P. I. Adyanata and A. Winarno, “Kajian Teknis Penggunaan Hub dan Hubless Rim Driven Propeller (Rdp) Sebagai Propeller Kapal Di Perairan Dangkal,” Jurnal Inovtek Polbeng, vol. 12, no. 1, 2022
  18. J. Carlton, “Marine Propellers and Propulsion,” Oxford : Elsevier Ltd. All right reserved, 2007
  19. E. P. Popov, “Mechanic of Materials.” San Francisco. Berkeley, 1984
  20. A. R. Nuranto, A. J. Fitroh, and H. Syamsudin, “Analysis of Aerodynamic Load of LSU-03 (LAPAN Surveillance UAV-03) Propeller,” 5th International Seminar of Aerospace Science and Technology, IOP Conf. Series: Journal of Physics: Conf. Series 1005 012005, 2018
  21. M. H. Firmansyah, “Studi Perbandingan Penerapan Haluan Axe Bow Dengan Ulstein X-Bow Pada Kapal Offshore Supply Vessel (OSV) 80 Terhadap Hambatan Total,” Universitas Hang Tuah, 2023
  22. X. Zhang, Z. Liu, L. Cao, and D. Wan, “Tip Clearance Effect on The Tip Leakage Vortex Evolution and WakeInstability of a Ducted Propeller,” J. Mar. Sci. Eng, 2022
  23. Ansys, “ANSYS Fluent Mosaic Technology Automatically Combines Disparate Meshes with Polyhedral Elements for Fast, Accurate Flow Resolution,” Ansys, Inc. All Rights Reserved, 2020
  24. F. R. Menter, R. Lechner, and A. Matyushenko, “Best Practice: RANS Turbulence Modeling in Ansys CFD,” Ansys, Inc. All Rights Reserved, 2021
  25. I. S. Arief, T. B. Musriyadi, and A. D. A. J. Mafera, “Analysis Effect of Duct Length– Nozzle Diameter Ratio and Tip Clearance Variation on the Performance of K-Series Propeller,” International Journal of Marine Engineering Innovation and Research, vol. 2, no. 1, pp. 77-85, 2017
  26. A. Winarno, A. S. Widodo, G. Ciptadi, and A. Iriany, “The Effect of Sail Layout on Fishing Vessels Hydrodynamics in the North Coast of Java using Computational Fluids Dynamic,” Semarak Ilmu: CFD Letter, vol. 16, issue. 1, pp. 107-120, 2024
  27. M. H. Firmansyah, “Studi Perbandingan Penerapan Haluan Axe Bow Dengan Ulstein X-Bow Pada Kapal Offshore Supply Vessel (OSV) 80 Terhadap Hambatan Total,” Universitas Hang Tuah, 2023

Last update:

No citation recorded.

Last update: 2024-11-14 20:23:09

No citation recorded.