skip to main content

Assessment of Aerodynamic Performance of Darrieus H-Rotor Wind Turbine Using Realizable k–ε Turbulence Model Approach

*Rizki Mendung Ariefianto orcid scopus publons  -  Department of Electrical Engineering, Universitas Brawijaya, Jl. Veteran, Ketawanggede, Lowokwaru, Malang, Indonesia 65145, Indonesia
Elyas Nur Fridayana  -  Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
Wisnu Wardhana  -  Department of Ocean Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
Open Access Copyright (c) 2024 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Wind energy extraction gains more attractiveness as the development of renewable energy progresses and the reduction of fossil fuel usage becomes imperative. Consequently, numerous efforts have been made to enhance turbine performance, such as with the Darrieus H-Rotor type, through numerical studies. Computational Fluid Dynamics (CFD) has become a prevalent tool for these studies, utilizing various approaches, including the eddy viscosity model based on the Boussinesq hypothesis, which underpins turbulence models. This research evaluates the performance of the Darrieus H-Rotor Wind Turbine via 2D CFD modeling using the Realizable k–ε turbulence model. The study also considers simulations with the Double Multiple Streamtube (DMST) model and other turbulence models applied to similar turbine geometries, with experimental data serving as validation benchmarks. Approximately 140,000 cells were utilized in the meshing process to balance simulation duration and the accuracy of the Cp value. The results indicate that the Realizable k–ε turbulence model performs satisfactorily, particularly in producing accurate Cp values in the pre-stall region. The comparison of average Cp values against experimental data across eight tip speed ratio points further supports the effectiveness of the Realizable k–ε turbulence model in simulating the aerodynamic performance of the Darrieus H-Rotor Wind Turbine. Nonetheless, the Realizable k–ε turbulence model fails to enable the Darrieus H-Rotor Wind Turbine to achieve positive Cm values across the entire azimuthal angle at lower tip speed ratios, thus not reaching effective self-starting conditions.

Fulltext View|Download
Keywords: Aerodynamics; Darrieus H-Rotor; CFD Simulation; Turbulence Model k – ε; Wind Turbine

Article Metrics:

  1. R. A. Aprilianto and R. M. Ariefianto, “Peluang Dan Tantangan Menuju Net Zero Emission (NZE) Menggunakan Variable Renewable Energy (VRE) Pada Sistem Ketenagalistrikan Di Indonesia,” J. Paradig., vol. 2, no. 2, pp. 1–13, 2021
  2. R. M. Ariefianto, R. A. Aprilianto, H. Suryoatmojo, and S. Suwito, “Design and Implementation of Z-Source Inverter by Simple Boost Control Technique for Laboratory Scale Micro-Hydro Power Plant Application,” J. Tek. Elektro, vol. 13, no. 2, pp. 62–70, 2021, doi: 10.15294/jte.v13i2.31884
  3. B. Zouzou, I. Dobrev, F. Massouh, and R. Dizene, “Experimental and numerical analysis of a novel Darrieus rotor with variable pitch mechanism at low TSR,” Energy, vol. 186, p. 115832, 2019, doi: https://doi.org/10.1016/j.energy.2019.07.162
  4. M. Ahmadi-Baloutaki, R. Carriveau, and D. S.-K. Ting, “Straight-bladed vertical axis wind turbine rotor design guide based on aerodynamic performance and loading analysis,” Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 228, no. 7, pp. 742–759, Jun. 2014, doi: 10.1177/0957650914538631
  5. S. Y. Cho, S. K. Choi, J. G. Kim, and C. H. Cho, “An experimental study of the optimal design parameters of a wind power tower used to improve the performance of vertical axis wind turbines,” Adv. Mech. Eng., vol. 10, no. 9, pp. 1–10, 2018, doi: 10.1177/1687814018799543
  6. R. M. Ariefianto, R. N. Hasanah, and Wijono, “Analisis Turbin Darrieus Tipe V-Shaped Blade Untuk Aplikasi Konverter Energi Arus Laut Menggunakan Software QBlade,” J. Kelaut. Nas., vol. 17, no. 2, pp. 107–122, 2022
  7. H. Eftekhari, A. S. Mahdi Al-Obaidi, and S. Eftekhari, “Aerodynamic Performance of Vertical and Horizontal Axis Wind Turbines: A Comparison Review,” Indones. J. Sci. Technol., vol. 7, no. 1, pp. 65–88, 2022, doi: 10.17509/ijost.v7i1.43161
  8. T. Srinivasa Rao, T. Mahapatra, and S. Chaitanya Mangavelli, “Enhancement of Lift-Drag characteristics of NACA 0012,” Mater. Today Proc., vol. 5, no. 2, Part 1, pp. 5328–5337, 2018, doi: https://doi.org/10.1016/j.matpr.2017.12.117
  9. G. Bedon, M. Raciti Castelli, and E. Benini, “Optimization of a Darrieus vertical-axis wind turbine using blade element – momentum theory and evolutionary algorithm,” Renew. Energy, vol. 59, pp. 184–192, 2013, doi: https://doi.org/10.1016/j.renene.2013.03.023
  10. M. Raciti Castelli, A. Englaro, and E. Benini, “The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD,” Energy, vol. 36, no. 8, pp. 4919–4934, 2011, doi: https://doi.org/10.1016/j.energy.2011.05.036
  11. A. A. Shoukat et al., “Blades Optimization for Maximum Power Output of Vertical Axis Wind Turbine,” Int. J. Renew. Energy Dev. Vol 10, No 3 August 2021DO - 10.14710/ijred.2021.35530 , Aug. 2021, [Online]. Available: https://ejournal.undip.ac.id/index.php/ijred/article/view/35530
  12. A. Rezaeiha, H. Montazeri, and B. Blocken, “Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence,” Energy Convers. Manag., vol. 156, pp. 301–316, 2018, doi: https://doi.org/10.1016/j.enconman.2017.11.026
  13. S. D. Hornshøj-Møller, P. D. Nielsen, P. Forooghi, and M. Abkar, “Quantifying structural uncertainties in Reynolds-averaged Navier–Stokes simulations of wind turbine wakes,” Renew. Energy, vol. 164, pp. 1550–1558, 2021, doi: https://doi.org/10.1016/j.renene.2020.10.148
  14. E. N. Fridayana, Y. S. Hadiwidodo, D. Satrio, and E. N. Irawan, “Studi Model Turbulensi Pada Vertical Axis Water Turbine (VAWT) Menggunakan Metode Computational Fluid Dynamics (CFD),” Syntax Lit. J. Ilm. Indones., vol. 7, no. 6, pp. 2003–2005, 2022
  15. S. Roy and U. K. Saha, “Comparative analysis of turbulence models for flow simulation around a vertical axis wind turbine,” in Indo-Danish International Conference on Wind Energy: Materials, Engineering, and Policies (WEMEP 2012), 2012, pp. 1–6. [Online]. Available: https://www.researchgate.net/publication/303080576_Comparative_analysis_of_turbulence_models_for_flow_simulation_around_a_vertical_axis_wind_turbine
  16. C. Song, Y. Zheng, Z. Zhao, Y. Zhang, C. Li, and H. Jiang, “Investigation of meshing strategies and turbulence models of computational fluid dynamics simulations of vertical axis wind turbines,” J. Renew. Sustain. Energy, vol. 7, no. 3, p. 33111, May 2015, doi: 10.1063/1.4921578
  17. I. Hashem and M. H. Mohamed, “Aerodynamic performance enhancements of H-rotor Darrieus wind turbine,” Energy, vol. 142, pp. 531–545, 2018, doi: 10.1016/j.energy.2017.10.036
  18. F. Alqurashi and M. H. Mohamed, “Aerodynamic forces affecting the H-rotor darrieus wind turbine,” Model. Simul. Eng., vol. 2020, pp. 1–15, 2020, doi: 10.1155/2020/1368369
  19. D. Satrio, I. K. A. P. Utama, and Mukhtasor, “The influence of time step setting on the CFD simulation result of vertical axis tidal current turbine,” J. Mech. Eng. Sci., vol. 12, no. 1 SE-Article, pp. 3399–3409, Mar. 2018, doi: 10.15282/jmes.12.1.2018.9.0303
  20. F. Villalpando, M. Reggio, and A. Ilinca, “Assessment of Turbulence Models for Flow Simulation around a Wind Turbine Airfoil,” Model. Simul. Eng., vol. 2011, no. 1, p. 714146, Jan. 2011, doi: https://doi.org/10.1155/2011/714146
  21. S. Rolland, W. Newton, A. J. Williams, T. N. Croft, D. T. Gethin, and M. Cross, “Simulations technique for the design of a vertical axis wind turbine device with experimental validation,” Appl. Energy, vol. 111, pp. 1195–1203, 2013, doi: https://doi.org/10.1016/j.apenergy.2013.04.026
  22. M. Kear, B. Evans, R. Ellis, and S. Rolland, “Computational aerodynamic optimisation of vertical axis wind turbine blades,” Appl. Math. Model., vol. 40, no. 2, pp. 1038–1051, 2016, doi: https://doi.org/10.1016/j.apm.2015.07.001
  23. S. Victor and M. Paraschivoiu, “Performance of a Darrieus turbine on the roof of a building,” Trans. Can. Soc. Mech. Eng., vol. 42, no. 4, pp. 341–349, 2018, doi: 10.1139/tcsme-2017-0096
  24. R. M. Ariefianto, R. N. Hasanah, and W. Wijono, “Unjuk Kerja Performa Turbin Arus Laut Sumbu Vertikal Pada Berbagai Bentuk Sudu Unik,” Rekayasa, vol. 15, no. 1, pp. 53–63, 2022, doi: 10.21107/rekayasa.v15i1.13572
  25. H. Beri and Y. Yao, “Double Multiple Streamtube Model and Numerical Analysis of Vertical Axis Wind Turbine,” Energy Power Eng., vol. 03, no. 03, pp. 262–270, 2011, doi: 10.4236/epe.2011.33033
  26. E. Sobhani, M. Ghaffari, and M. J. Maghrebi, “Numerical investigation of dimple effects on darrieus vertical axis wind turbine,” Energy, vol. 133, pp. 231–241, 2017, doi: https://doi.org/10.1016/j.energy.2017.05.105
  27. Y. Celik and M. N. Kaya, “Numerical Investigation of The Starting Behaviour of H-Type Vertical Axis Wind Turbine with Different Airfoils,” in The International Conference on Innovative Engineering Applications, Sep. 2018, pp. 1–9
  28. L. Ni, W. Miao, C. Li, and Q. Liu, “Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations,” Energy, vol. 215, p. 118915, 2021, doi: https://doi.org/10.1016/j.energy.2020.118915
  29. A. Muratoğlu and M. S. Demir, “Numerical Analyses of a Straight Bladed Vertical Axis Darrieus Wind Turbine: Verification of DMS Algorithm and Qblade Code,” Eur. J. Tech., vol. 9, no. 2, pp. 195–208, 2019, doi: 10.36222/ejt.643483
  30. A. Aihara, V. Mendoza, A. Goude, and H. Bernhoff, “Comparison of Three-Dimensional Numerical Methods for Modeling of Strut Effect on the Performance of a Vertical Axis Wind Turbine,” 2022. doi: 10.3390/en15072361
  31. Y. Wang, H. Tong, H. Sima, J. Wang, J. Sun, and D. Huang, “Experimental study on aerodynamic performance of deformable blade for vertical axis wind turbine,” Energy, vol. 181, pp. 187–201, 2019, doi: https://doi.org/10.1016/j.energy.2019.03.181

Last update:

No citation recorded.

Last update: 2025-01-19 15:00:35

No citation recorded.