skip to main content

Performance and Vibration Analysis of Electric Outboard Propulsion using Propeller Variations Based on Experiment

*Adhi Iswantoro scopus  -  Department of Marine Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
Juniono Raharjo  -  Department of Marine Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
Yonathan Iwangsa Sima  -  Department of Marine Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
Open Access Copyright (c) 2024 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The demand for electric vehicles, including electric outboard propulsion for small ship, is on the rise due to growing environmental concerns. To optimize the performance of electric outboards, propeller selection, particularly propeller pitch, is crucial. This research evaluated the impact of varying propeller pitches 8, 9 and 12 degrees on the performance of an electric outboard propulsion. Through both laboratory and field tests, measurements of water flow velocity and thrust, energy consumption, boat speed, and vibration levels were conducted. The objective was to identify the optimal propeller pitch that maximizes propulsive efficiency and minimizes energy consumption. Results indicated that a propeller pitch of 8 degrees produced the highest water flow velocity, implying the greatest thrust. Field tests corroborated these findings, with the 8-degree pitch achieving an average speed of 10 km/h and a roundtrip time of 3.48 minutes. However, the 8-degree pitch also exhibited the highest energy consumption at 0.31366 kWh. Vibration levels were minimal across all pitches, suggesting no structural damage. These findings hold significant implications for the design and selection of electric propulsion systems in small ship, especially for patrol boats.

Fulltext View|Download
Keywords: Electric Propulsion; Experiment Study; Performance; Propeller Pitch; Vibration

Article Metrics:

  1. R. A. Aprilianto and R. M. Ariefianto, “Peluang Dan Tantangan Menuju Net Zero Emission (NZE) Menggunakan Variable Renewable Energy (VRE) Pada Sistem Ketenagalistrikan di Indonesia”, J. Paradig., vol. 2, no. 2, pp. 1–13, 2021
  2. I. Desti, “Literature RIview: Upaya Energi Bersih dan Terjangkau”, J. Sains Edukatika Indonesia, vol. 4, no. 1, pp. 8–11, 2022
  3. Kim, Sang Hoon, Electric Motor, (2017)
  4. H. İşler, “Comparison of Electric (EV) and Fossil Fuel (Gasoline-Diesel) Vehicles in Terms of Torque and Power”, May, 2023, Available: https://www.researchgate.net/publication/370553199
  5. A. D. Firmansyah, A. Santoso, D. E. Djatmiko, “Perancangan Controllable Pitch Propeller pada Kapal Offshore Patrol Vessel 80 (OPV80)”, J. Tek. ITS, vol. 1, no. 1, pp. 230–233, 2012
  6. R. M. Khozin, I. S. Arief, and T. Bambang, “Pengaruh Variasi Pitch Terhadap Kinerja Ducted Contra Rotating Propeller Dengan Pendekatan CFD”, pp. 57, 2016
  7. M. N. Habib, E. R. De Fretes, and S. T. A. Lekatompessy, “Pengaruh Kemiringan Poros Baling-Baling Terhadap Kecepatan Perahu Ketinting”, ALE Proceeding, vol. 4, pp. 18–22, 2021, doi: 10.30598/ale.4.2021.18-22
  8. E. Gatete, H. M. Ndiritu, and R. Kiplimo, “A Review on Marine Propeller Performance of High Speed Boat Running on an Outboard Engine”, Sustain. Res. Innov. Conf., pp. 213–220, 2018
  9. IM Ariana, A Iswantoro, SA Fitri, " Combining Optimum Propeller Design on Roro Ship Re-engine", J. Kapal, pp. 201-213, 2023
  10. R. Fauzirahman et al., “Analisa Pengaruh Propeller Coating Terhadap Kavitasi,” 2018
  11. AslamShaikh, “Study of Propeller Design Parameters”, Int. J. Innov. Eng. Res. Technol., pp. 1–7, 2014
  12. D. Satria, R. Lusiani, Haryadi, I. Rosyadi, and A. Fauzi, “Analisa Perhitungan Energi Listrik Pada Sepeda Listrik Hybrid”, J. Sains dan Teknologi Univ. Sultan Ageng Tirtayasa, vol. 11, no. 1, pp. 9–19, 2017
  13. D. Bagus Setyawan and Sufiyanto, “Metode Vibration Analysis Dalam Aplikasi Perawatan Mesin”, Transmisi, vol. 9, no. 2, pp. 921–930, 2013
  14. D. Bagus Setyawan and Sufiyanto, “Metode Vibration Analysis Dalam Aplikasi Perawatan Mesin”, Transmisi, vol. 9, no. 2, pp. 921–930, 2013
  15. C. Nuchturee, Tie Li, H. Xia, "Energy efficiency of integrated electric propulsion for ships – A review", Renewable and Sustainable Energy Reviews, vol. 134, pp.1-25, 2020
  16. R. D. Geertsma, K. Visser, R. R. Negenborn., “Adaptive Pitch Control for Ships with Diesel Mechanical and Hybrid Propulsion", Applied Energy, vol. 228, pp. 2490-2509, 2018
  17. W. Zhu, Z. Li, R. Ding, "Effect of Pitch Ratio on The Cavitation of Controllable Pitch Propeller", Ocean Engineering, vol. 293, pp. 1-17, 2024
  18. Q. Tan, Y. Ding, C. Sui, L. Xiang., "Effects of Propeller Cavitation on Ship Propulsion Performance in Off-Design Operating Conditions", Ocean Engineering, vol. 313, pp. 1-16, 2024
  19. M. J. Eom, K. J. Paik, Y. H. Jang, J. Y. Ha, D. W. Park, "A Method for Predicting Propeller Performance Considering Ship Motion in Regular Waves", Ocean Engineering, vol. 232, pp. 1-12, 2021
  20. J. Z. Liu, Z. J. Zou, H. P. Guo, C. Z. Chen, "A Study on The Interaction Among Hull, Engine and Propeller During Self-Propulsion of a Ship", Ocean Engineering, vol. 286, pp. 1-15, 2023
  21. H. Koike, Y. Noborio, S. Wada. A. Maki, "A Simplified Piecewise Linear Characteristic Model of Controllable Pitch Propeller Considering Unbalanced Hydrodynamics Force", Ocean Engineering, vol. 298, pp. 1-13, 2024

Last update:

No citation recorded.

Last update: 2025-01-19 22:17:57

No citation recorded.