skip to main content

Implementation of Failure Mode and Effects Analysis in the Maintenance Strategy for the Main Engine Cooling System Pump of Fishing Vessels

*Juniawan Preston Siahaan  -  Department of Ship Machinery, Politeknik Kelautan dan Perikanan Dumai, Indonesia
Rizqi Ilmal Yaqin orcid scopus publons  -  Department of Ship Machinery, Politeknik Kelautan dan Perikanan Dumai, Indonesia
Mula Tumpu  -  Department of Ship Machinery, Politeknik Kelautan dan Perikanan Dumai, Indonesia
Ade Hermawan  -  Department of Fishery Machinery, Politeknik Ahli Usaha Perikanan (AUP) Jakarta, Indonesia
Setyawan Dwi Nugroho  -  Department of Fisheries Mechanization, Politeknik Kelautan dan Perikanan Sidoarjo, Indonesia
Bagas Prakoso  -  Department of Fisheries Mechanization, Politeknik Kelautan dan Perikanan Sorong, Indonesia
Febi Luthfiani  -  Department of Fisheries Mechanization, Politeknik Kelautan dan Perikanan Kupang, Indonesia
Lukman Adria Saputra Zein  -  Department of Ship Machinery, Politeknik Kelautan dan Perikanan Dumai, Indonesia
Received: 13 Oct 2024; Revised: 17 Mar 2025; Accepted: 25 Mar 2025; Available online: 21 Apr 2025; Published: 21 Apr 2025.
Open Access Copyright (c) 2025 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The performance of the main engine of a fishing vessel becomes less than optimal when its cooling system does not function properly. Centrifugal pumps, as an important component of the cooling system, require special attention in selecting maintenance methods to maintain stable performance. This study aims to investigate the maintenance strategy of centrifugal pumps in the cooling system of the main engine of a fishing vessel. The Failure Mode and Effects Analysis (FMEA) method is used to analyze maintenance strategies based on RPN values. The resulting RPN value can indicate the maintenance strategy that needs to be carried out. The highest RPN value and the failure mode category that requires special attention are analyzed using a histogram diagram. While the root cause of failure is clarified with a fishbone diagram. The results show that the highest failure mode is damage to the pump impeller due to corrosion. The main cause of this failure is found in the selection of impeller materials that are less suitable for working conditions and the environment. Predictive maintenance strategies are considered as a solution to overcome pump impeller problems. This study provides insight into choosing the right maintenance strategy, especially for fishing vessel engines.

Fulltext
Keywords: Centrifugal Pump, FMEA, Maintenance Strategy, RPN
Funding: BIMA-KKP under contract 393/PPK.PUSDIK/PL.430/V/2024

Article Metrics:

  1. Y. E. Priharanto, R. I. Yaqin, G. Marjianto, J. P. Siahaan, and M. Z. L. Abrori, “Risk Assessment of the Fishing Vessel Main Engine by Fuzzy-FMEA Approach,” Journal of Failure Analysis and Prevention, vol. 23, no. 2, pp. 822–836, Apr. 2023, doi: 10.1007/s11668-023-01607-w
  2. J. Liu, B. Wang, Z. Meng, and Z. Liu, “An examination of performance deterioration indicators of diesel engines on the plateau,” Energy, vol. 262, Jan. 2023, doi: 10.1016/j.energy.2022.125587
  3. K. D. Huang, S. C. Tzeng, and W. P. Ma, “Effects of anti-freeze concentration in the engine coolant on the cavitation temperature of a water pump,” Appl Energy, vol. 79, no. 3, pp. 261–273, 2004, doi: 10.1016/j.apenergy.2004.01.004
  4. H. Salehi, H. Basir, H. M. Bidhendi, F. Farhani, and M. A. Rosen, “Experimental and simulation study of an automobile cooling system: Performance improvement using passive flow control,” International Communications in Heat and Mass Transfer, vol. 149, Dec. 2023, doi: 10.1016/j.icheatmasstransfer.2023.107168
  5. R. Yu and J. Liu, “Failure analysis of centrifugal pump impeller,” Eng Fail Anal, vol. 92, pp. 343–349, Oct. 2018, doi: 10.1016/j.engfailanal.2018.06.003
  6. S. Ariely and A. Khentov, “Erosion corrosion of pump impeller of cyclic cooling water system,” Eng Fail Anal, vol. 13, no. 6, pp. 925–932, Sep. 2006, doi: 10.1016/j.engfailanal.2005.07.012
  7. X. Luo, W. Wei, B. Ji, Z. Pan, W. Zhou, and H. Xu, “Comparison of cavitation prediction for a centrifugal pump with or without volute casing,” Journal of Mechanical Science and Technology, vol. 27, no. 6, pp. 1643–1648, Jun. 2013, doi: 10.1007/s12206-013-0411-5
  8. Q. Thai and C. Lee, “The cavitation behavior with short length blades in centrifugal pump,” Journal of Mechanical Science and Technology, vol. 24, no. 10, pp. 2007–2016, Oct. 2010, doi: 10.1007/s12206-010-0705-9
  9. J. P. Siahaan, R. I. Yaqin, Y. E. Priharanto, M. Z. L. Abrori, and N. Siswantoro, “Risk-Based Maintenance Strategies on Fishing Vessel Refrigeration Systems Using Fuzzy-FMEA,” Journal of Failure Analysis and Prevention, vol. 24, no. 2, pp. 855–876, Apr. 2024, doi: 10.1007/s11668-024-01878-x
  10. I. Alsyouf, “The role of maintenance in improving companies’ productivity and profitability,” Int J Prod Econ, vol. 105, no. 1, pp. 70–78, Jan. 2007, doi: 10.1016/j.ijpe.2004.06.057
  11. Y. Wang, G. Cheng, H. Hu, and W. Wu, “Development of a risk-based maintenance strategy using FMEA for a continuous catalytic reforming plant,” J Loss Prev Process Ind, vol. 25, no. 6, pp. 958–965, Nov. 2012, doi: 10.1016/j.jlp.2012.05.009
  12. J. S. Tan and M. A. Kramer, “A general framework for preventive maintenance optimization in chemical process operations,” Computers chem. Engng, vol. 21, no. 12, pp. 1451–1469, 1997
  13. J. Balaraju, M. Govinda Raj, and C. S. Murthy, “Fuzzy-FMEA risk evaluation approach for LHD machine-A case study,” Journal of Sustainable Mining, vol. 18, pp. 257–268, Nov. 2019, doi: 10.1016/j.jsm.2019.08.002
  14. S. M. Seyed-Hosseini, N. Safaei, and M. J. Asgharpour, “Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique,” Reliab Eng Syst Saf, vol. 91, no. 8, pp. 872–881, Aug. 2006, doi: 10.1016/j.ress.2005.09.005
  15. M. R. Maghami, S. Vahabzadeh, A. G. O. Mutambara, S. J. Ghoushchi, and C. Gomes, “Failure analysis in smart grid solar integration using an extended decision-making-based FMEA model under uncertain environment,” Stochastic Environmental Research and Risk Assessment, vol. 38, pp. 3543–3563, Sep. 2024, doi: 10.1007/s00477-024-02764-6
  16. M. D. Ramere and O. T. Laseinde, “Optimization of condition-based maintenance strategy prediction for aging automotive industrial equipment using FMEA,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 229–238. doi: 10.1016/j.procs.2021.01.160
  17. Q. Zeng, W. Liu, L. Wan, C. Wang, and K. Gao, “Maintenance Strategy Based on Reliability Analysis and FMEA: A Case Study for Hydraulic Cylinders of Traditional Excavators with ERRS,” Math Probl Eng, vol. 2020, 2020, doi: 10.1155/2020/2908568
  18. Z. F. Emzain, Z. G. Wardhana, S. Adiwidodo, S. D. N. Rosady, and M. A. Nova, “Implementation of Failure Mode and Effect Analysis (FMEA) for centrifugal pump maintenance in water supply distribution system,” Jurnal Polimesin, vol. 22, no. 3, pp. 2024–2030, 2024, [Online]. Available: http://e-jurnal.pnl.ac.id/polimesin
  19. M. H. Enjavimadar and M. Rastegar, “Optimal reliability-centered maintenance strategy based on the failure modes and effect analysis in power distribution systems,” Electric Power Systems Research, vol. 203, Feb. 2022, doi: 10.1016/j.epsr.2021.107647
  20. M. N. Scheu, L. Tremps, U. Smolka, A. Kolios, and F. Brennan, “A systematic Failure Mode Effects and Criticality Analysis for offshore wind turbine systems towards integrated condition based maintenance strategies,” Ocean Engineering, vol. 176, pp. 118–133, Mar. 2019, doi: 10.1016/j.oceaneng.2019.02.048
  21. M. A. Bin Yusof and N. H. B. Abdullah, “Failure Mode And Effect Analysis (FMEA) Of Butterfly Valve In Oil And Gas Industry,” Journal of Engineering Science and Technology , vol. 2015, no. Special Issue on ICE & ICIE, pp. 9–19, 2016
  22. R. Rakesh, B. C. Jos, and G. Mathew, “FMEA Analysis for Reducing Breakdowns of a Sub System in the Life Care Product Manufacturing Industry,” International Journal of Engineering Science and Innovative Technology (IJESIT), vol. 2, no. 2, pp. 218–225, 2013
  23. M. H. A. Baig and S. G. Prasanthi, “Failure Modes and Effect Analysis of a Mechanical Assembly by Using Mil-Std 1629a Method,” International Journal of Advanced Information Science and Technology (IJAIST), vol. 2, no. 5, pp. 68–71, 2013, doi: 10.15693/ijaist/2013.v2i5.68-71
  24. K. Sotoodeh, “Failure Mode and Effect Analysis (FMEA) of Pipeline Ball Valves in the Offshore Industry,” Journal of Failure Analysis and Prevention, vol. 20, no. 4, pp. 1175–1183, Aug. 2020, doi: 10.1007/s11668-020-00924-8
  25. F. Suryani, “Penerapan Metode Diagram Sebab Akibat (Fish Bone Diagram) Dan Fmea (Failure Mode And Effect) Dalam Menganalisa Resiko Kecelakan Kerja Di Pt. Pertamina Talisman Jambi Merang,” Journal Industrial Servicess, vol. 3, no. 2, pp. 63–69, 2018
  26. B. Puthillath and R. Sasikumar, “Selection of Maintenance Strategy Using Failure Mode Effect and Criticality Analysis,” International Journal of Engineering and Innovative Technology (IJEIT), vol. 1, no. 6, pp. 73–79, 2012
  27. T. A. Nugroho, A. S. Hutama, P. Kurniawan, B. Crina Aji, and S. Nuriyah, “Analisis Kegagalan Mesin Produksi Rokok Cigarillos Dengan Metode FMEA,” Jurnal CRANKSHAFT, vol. 6, no. 3, pp. 8–17, 2023
  28. M. A. Billy, D. S. Kurniawan, Sursina, and Mudakir, “Performance Analysis of Sea Water Cooling Pumps on The Smoothness of The Main Engine Cooling System On The Mt. Fail,” Internasional Journal of Advanced Multidisciplinary, vol. 2, no. 2, pp. 589–594, 2023, doi: 10.38035/ijam.v2i2
  29. C. Dağsuyu, E. Göçmen, M. Narlı, and A. Kokangül, “Classical and fuzzy FMEA risk analysis in a sterilization unit,” Comput Ind Eng, vol. 101, pp. 286–294, Nov. 2016, doi: 10.1016/j.cie.2016.09.015
  30. F. Szmytka, M. Salem, F. Rézaï-Aria, and A. Oudin, “Thermal fatigue analysis of automotive Diesel piston: Experimental procedure and numerical protocol,” Int J Fatigue, vol. 73, pp. 48–57, 2015, doi: 10.1016/j.ijfatigue.2014.11.011
  31. M. J. Kalathil, V. R. Renjith, and N. R. Augustine, “Failure mode effect and criticality analysis using dempster shafer theory and its comparison with fuzzy failure mode effect and criticality analysis: A case study applied to LNG storage facility,” Process Safety and Environmental Protection, vol. 138, pp. 337–348, Jun. 2020, doi: 10.1016/j.psep.2020.03.042
  32. R. Ramakrishna, S. Hemalatha, and D. S. Rao, “Analysis and performance of centrifugal pump impeller,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 2467–2473. doi: 10.1016/j.matpr.2021.10.364
  33. M. I. Ramadhan, J. Sumarjo, F. C. Suci, and D. T. Santoso, “Analisis Kerusakan Mesin AHU Menggunakan Pendekatan Metode Failure Mode And Effect Analysis,” ROTOR, vol. 14, no. 2, pp. 49–53, 2021
  34. E. Krisnaningsih, P. Gautama, and M. F. K. Syams, “Usulan Perbaikan Kualitas Dengan Menggunakan Metode FtA Dan FMEA,” Jurnal InTent, vol. 4, no. 1, pp. 41–54, 2021
  35. V. Chaturvedi, N. Jawahar, S. Khare, and S. Chandra, “Failure analysis of rear lower centre cowl of a motorcycle,” Eng Fail Anal, vol. 108, Jan. 2020, doi: 10.1016/j.engfailanal.2019.104223
  36. S. Zhang, R. Zhang, S. Zhang, and J. Yang, “Effect of Impeller Inlet Geometry on Cavitation Performance of Centrifugal Pumps Based on Radial Basis Function,” International Journal of Rotating Machinery, vol. 2016, 2016, doi: 10.1155/2016/6048263
  37. E. Febriyanti, Sutarjo, and K. Anwar, “Analisis Kegagalan Impeller Penyebab Kerusakan Pompa Air Kapal Laut Impeller Failure Analysis Causes Of Sentrifugal Pump Damage From Ship Unit,” M.P.I, vol. 11, no. 2, pp. 85–94, 2017

Last update:

No citation recorded.

Last update: 2025-04-26 05:38:27

No citation recorded.