skip to main content

Analysis of the Effect of Shielding Gas Composition and FCAW Parameters on Shipbuilding Steel Plate for Ship Hull Production

*Mochammad Karim Al Amin  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Rafi Febian Soelistijono  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Adristi Nisazarifa  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Buana Ma'ruf  -  Pusat Riset Teknologi Hidrodinamika, Indonesia
Priyambodo Nur Ardi Nugroho  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Muhammad Anis Mustaghfirin  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Erwien Yuliansyah Putera  -  Pusat Riset Teknologi Hidrodinamika, Indonesia
Bambang Irawan  -  Pusat Riset Teknologi Hidrodinamika, Indonesia
Dika Anggara  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Eriek Wahyu Restu Widodo  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Bachtiar Bachtiar  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Ilham Khoirul Ibad  -  PT Krakatau Steel (Persero) Tbk., Indonesia
Mochammad Yudha Aditya Pratama Putra  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Open Access Copyright (c) 2024 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Shielding gas is an important thing to protect the weld metal from impurities during the welding process. Ar, CO2, and mixing gas of Ar-CO2 are often used as a shielding gas in the marine industry. Differences in shielding gases and the current of welding could affect the microstructure and hardness of welding. This research analyzed the microstructure and hardness from the FCAW process of Shipbuilding Steel Plate using mixing gas and shielding gas of 100% CO2 with variations of current 180 and 195 A. The filler metal which has been used was A 5.20 E-71T1. The microstructure for the weld metal with 100% CO2 shielding gas was pearlite, widmanstatten ferrite, grain ferrite, and polygonal ferrite; otherwise for mixing shielding gas of 80% Ar + 20% CO2 and 75%Ar + 25% CO2 was found, the structure of pearlite, grain ferrite, and acicular ferrite. The effect of variations in the shielding gas composition and welding current that produced the highest hardness value was achieved with a shielding gas composition of 80% Ar + 20% CO2 and a current of 195 A, resulting in a hardness of 159.2 HV in the weld area.
Fulltext
Keywords: Shielding Gas; Microstructure; Hardness Test; Welding Current; Steel Plate

Article Metrics:

  1. R. Singh, “Welding and joining processes,” in Applied Welding Engineering, Elsevier, 2020, pp. 157–186
  2. M. Ushio, K. Ikeuchi, M. Tanaka, and T. Seto, “Effects of shielding gas on metal transfer,” Weld. Int., vol. 9, no. 6, pp. 462–466, Jan. 1995, doi: 10.1080/09507119509548831
  3. D. Purnama and H. Oktadinata, “Effect of Shielding Gas and Filler Metal to Microstructure of Dissimilar Welded Joint Between Austenitic Stainless Steel and Low Carbon Steel,” IOP Conf. Ser. Mater. Sci. Eng., vol. 547, no. 1, p. 012003, Aug. 2019, doi: 10.1088/1757-899X/547/1/012003
  4. H. Wiryosumarto and T. Okumura, Teknologi Pengelasan Logam, 8th ed. Jakarta: Pradnya Paramita, 2000
  5. D. Wallerstein, E. Vaamonde, A. Prada, E. Torres, S. Urtiga Filho, and T. Santos, “Influence of welding gases and filler metals on hybrid laser-GMAW and Laser-FCAW welds,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 235, no. 15, pp. 2754–2767, Aug. 2021, doi: 10.1177/0954406220957053
  6. R. I. Tillah, P. Imawan, and E. Pranatal, “Pengaruh Variasi Jenis Gas Pelindung Pada Pengelasan FCAW Dengan Material SS 400,” in Seminar Teknologi Kebumian dan Kelautan (SEMITAN), 2020, doi: https://doi.org/10.31284/j.semitan.2020.1063
  7. W. Haupt, K. C. Riffel, C. L. Israel, R. H. G. Silva, and A. Reguly, “Effect of wire electrode and shielding gas compositions on the mechanical properties of DOMEX 700 steel welded by the GMAW-P process,” J. Brazilian Soc. Mech. Sci. Eng., vol. 40, no. 4, p. 174, Apr. 2018, doi: 10.1007/s40430-018-1117-5
  8. M. T. Liao and W. J. Chen, “The effect of shielding-gas compositions on the microstructure and mechanical properties of stainless steel weldments,” Mater. Chem. Phys., vol. 55, no. 2, pp. 145–151, Sep. 1998, doi: 10.1016/S0254-0584(98)00134-5
  9. D. Katherasan, P. Sathiya, and A. Raja, “Shielding gas effects on flux cored arc welding of AISI 316L (N) austenitic stainless steel joints,” Mater. Des., vol. 45, pp. 43–51, Mar. 2013, doi: 10.1016/j.matdes.2012.09.012
  10. I. Habibi, J. T. Prasetyo, N. Muhayat, and T. Triyono, “EFFECT OF SHIELDING GAS ON THE PROPERTIES OF STAINLESS-STEEL SUS 304L PLUG WELDED,” J. Rekayasa Mesin, vol. 13, no. 3, pp. 899–910, Jan. 2023, doi: 10.21776/jrm.v13i3.1251
  11. Pratiwi, Y. R. and Wibowo, S. S. (2019). ‘Pengaruh Jenis Elektroda Dan Jumlah Pass Terhadap Uji Kekerasan Hasil Pengelasan Dan Struktur Mikro Pada Proses Pengelasan Shielded Metal Arch Welding’, Briliant: Jurnal Riset dan Konseptual
  12. Rizal A. A., Suharno, & Herman Saputro (2019). Pengaruh Variasi Diameter Elektroda E7018 Terhadap Kekuatan Tarik, Kekerasan, dan Struktur Mikro Pengelasan pada Baja Karbon Rendah Jenis SS400 dengan Metode SMAW’, Jurnal Teknik Universitas Negeri Gorontalo
  13. Ebrahimnia, M. et al. (2009). ‘Study of the effect of shielding gas composition on the mechanical weld properties of steel ST 37-2 in gas metal arc welding’, Materials and Design. Elsevier Ltd
  14. R. Ghomashchi, W. Costin, and R. Kurji, “Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study,” Mater. Charact., vol. 107, pp. 317–326, Sep. 2015, doi: 10.1016/j.matchar.2015.07.032
  15. Gadallah, R. et al. (2012). ‘Influence of shielding gas composition on the properties of flux-cored arc welds of plain carbon steel’, International Journal of Engineering and Technology Innovation, 2(1), pp. 01–12
  16. Sufyani, R. and Leonard, Y. (2018). ‘Pengaruh Arus Las Pada Proses Las FCAW Terhadap Struktur Mikro dan Kekerasan’, Isu Teknologi Stt Mandala, 13(1), pp. 1–12

Last update:

No citation recorded.

Last update: 2025-02-21 00:51:58

No citation recorded.