skip to main content

Risk Analysis of Ship Collision and Modelling of Oil Spill Trajectory Study Case : Dumai Port

Fariz Maulana Noor  -  Pusat Riset Teknologi Hidrodinamika, Badan Riset dan Inovasi Nasional, Indonesia
Dhimas Widhi Handani  -  Department of Marine Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
Muryadin Muryadin  -  Pusat Riset Teknologi Hidrodinamika, Badan Riset dan Inovasi Nasional, Indonesia
Dian Purnama Sari  -  Pusat Riset Teknologi Hidrodinamika, Badan Riset dan Inovasi Nasional, Indonesia
Rio Dwi Sakti Wijaya  -  Pusat Riset Teknologi Hidrodinamika, Badan Riset dan Inovasi Nasional, Indonesia
Dimas Fajar Prasetyo  -  Pusat Riset Teknologi Hidrodinamika, Badan Riset dan Inovasi Nasional
Nanang Setiyobudi  -  Pusat Riset Teknologi Hidrodinamika, Badan Riset dan Inovasi Nasional, Indonesia
Arfis Maydino Firmansyah Putra  -  Pusat Riset Teknologi Hidrodinamika, Badan Riset dan Inovasi Nasional, Indonesia
Arga Iman Malakani  -  Pusat Riset Teknologi Hidrodinamika, Badan Riset dan Inovasi Nasional, Indonesia
*Mohamad Imam Afandi  -  Pusat Riset Teknologi Hidrodinamika, Badan Riset dan Inovasi Nasional, Indonesia
Open Access Copyright (c) 2024 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Dumai Port is an important natural port located in Sumatra, characterized by relatively deep waters that are sheltered from waves and have calm currents due to surrounding islands. The port plays a crucial role in the export of crude palm oil (CPO) and the operations of Pertamina's RU II, which are expected to increase, leading to a rise in ship traffic. Increasing maritime activity raises concerns about potential accidents, such as collisions, necessitating a thorough risk analysis to estimate the frequency of collisions and their possible consequences. To assess the frequency of ship collisions, the IWRAP (Integrated Waterway Risk Assessment Program) was employed, analyzing vessel traffic data over a year alongside the port's bathymetric data. The analysis revealed the total frequency of ship collisions is 0.589766 across various scenarios, including head-on, overtaking, crossing, bending, and merging. The frequency is considered acceptable, as it falls below the threshold of one collision per year. Furthermore, oil spill trajectory modelling was conducted using two types of oil and two wave heights. In the 2000 m³ oil spill modelling at a height of 0.5 m, the crude oil model showed 68.4% still floating, while the product oil model had 41.7% floating. In the 1.5 m modelling, the crude oil model had 29% floating, and the product oil model had 16.2% floating. Notably, significant oil loss in the 1.5 m model occurred due to evaporation and natural dispersion. The results of the oil spill trajectory modelling provide valuable insights for enhancing the accuracy and efficiency of oil spill response strategies.

Fulltext
Keywords: Risk Analysis, Ship Collision, IWRAP, Oil Spill, webGNOME

Article Metrics:

  1. “Annual Report PT Pelabuhan Indonesia I (Persero) 2019,” 2019
  2. “Laporan Tahunan Tahun 2023 Kantor Kesyahbandaran dan Otoritas Pelabuhan Kelas 1 Dumai,” Dumai, Jan. 2024
  3. “Laporan Tahunan 2019 PT.Pertamina,” 2019
  4. Y. Fujii and R. Shiobara, “The Analysis of Traffic Accidents,” Journal of Navigation, vol. 57, no. 3, pp. 534–543, 1971
  5. T. McDuff, “The Probability of Vessel Collision,” Ocean Industry, vol. 68, no. 3, pp. 144–148, 1978
  6. P. Friis-Hansen, K. Frouws, and P. Dalhoff, “Reduction of Ship Collision Risks for Offshore Wind Farms-SAFESHIP,” 2004. [Online]. Available: https://www.researchgate.net/publication/367344627
  7. P. T. Pedersen, “Review and application of ship collision and grounding analysis procedures,” Jul. 2010. doi: 10.1016/j.marstruc.2010.05.001
  8. J. Weng, Q. Meng, and X. Qu, “Vessel collision frequency estimation in the Singapore Strait,” Journal of Navigation, vol. 65, no. 2, pp. 207–221, Apr. 2012, doi: 10.1017/S0373463311000683
  9. A. I. Wulandari, R. J. Ikwani, S. Suardi, R. S. Yani, A. N. Himaya, and A. Alamsyah, “Collision Analysis of A Self Propelled Oil Barge (SPOB) Usisng Finite Element Method,” Kapal : Jurnal Ilmu Penegtahuan dan Teknologi (Journal of Marine Science and Technology), vol. 19, no. 2, pp. 1–11, Jul. 2022
  10. P. Friis-Hansen, “IWRAP MK II WORKING DOCUMENT BASIC MODELLING PRINCIPLES FOR PREDICTION OF COLLISION AND GROUNDING FREQUENCIES,” 2007. [Online]. Available: www.iseso.org
  11. Y. Fujii, H. Yamanouchi, and T. Matui, Survey on Vessel Traffic Management System and Brief Introduction to Marine Traffic Studies, vol. No.45. Electronic Navigation Research Institute, 1984
  12. M. E. Khaled and Y. Kawamura, “Collision Risk Analysis of Chittagong Port in Bangladesh by Using Collision Frequency Calculation Models with Modified BBN Model,” 2015, doi: 10.13140/RG.2.1.2924.1441
  13. F. Cucinotta, E. Guglielmino, and F. Sfravara, “Frequency of Ship Collisions in the Strait of Messina through Regulatory and Environmental Constraints Assessment,” Journal of Navigation, vol. 70, no. 5, pp. 1002–1022, Sep. 2017, doi: 10.1017/S0373463317000157
  14. D. W. Handani, M. Ariana, A. A. B. Dinariyana, and I. G. M. Sukanegara Adhita, “Modelling of Ship Collision Frequency in The Strait of Malacca and Singapore (SOMS) Influenced by Indonesian Port Development,” 2019
  15. https://maritim.bmkg.go.id/inawis, “Indonesia-Weather Information for Shipping.”
  16. https://gnome.orr.noaa.gov/, “WebGNOME.”
  17. Y. Fujii, H. Yamanouchi, and N. Mizuki, “Some Factors Affecting the Frequency of Accident in Marine Traffic. III-The Effect of Darkness on the Probability of Collision and Stranding,” Journal of Navigation, vol. 27, no. 2, 1974
  18. N. D. Wuryaningrum, D. W. Handani, F. I. Prastyasari, and A. A. B. Dinariyana, “Frequency Analysis of Ship Collision and Its Impact on the Fulfillment of Supporting Facilities and Route Changes Due to Implementation of Sunda Strait TSS,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Sep. 2020. doi: 10.1088/1755-1315/557/1/012042
  19. M. Fingas, “Introduction to Spill Modeling,” in Oil Spill Science and Technology: Second Edition, Elsevier Inc., 2017, pp. 419–453. doi: 10.1016/B978-0-12-809413-6.00008-4
  20. M. Fingas, “Handbook of Oil Spill Science and Technology,” 2015

Last update:

No citation recorded.

Last update: 2025-01-20 09:55:19

No citation recorded.