BibTex Citation Data :
@article{JM16678, author = {Solikhin Solikhin and YD Sumanto and Susilo Hariyanto and Abdul Aziz}, title = {RUANG MATRIX LINEAR TRANSLASI INVARIAN PADA RUANG FUNGSI INTEGRAL HENSTOCK-DUNFORD PADA [a,b]}, journal = {MATEMATIKA}, volume = {20}, number = {2}, year = {2017}, keywords = {}, abstract = {In this paper we study Henstock-Dunford integral on [a,b]. We discuss some properties of the integrable. We will construct norm and matrix on Dunford-Henstock integrable function space, \$HD[a,b]\$. We obtain that \$HD[a,b]\$ is linear space. A function \$\left\| \,.\, \right\|:HD[a,b]\to R\$ defined by \$\left\| f \right\|=\underset\{\begin\{smallmatrix\} \{\{x\}^\{*\}\}\in \{\{X\}^\{*\}\} \\ \left\| \{\{x\}^\{*\}\} \right\| \le 1 \end\{smallmatrix\}\}\{\mathop\{\sup\}\}\, \\ left( \underset\{A\subset[a,b]\}\{\mathop\{\sup\}\}\,\,\left| \left( H \right) \int \limits_\{A\}\{\{\{x\}^\{*\}\}f\} \right| \right)\$ for every \$f \in HD[a,b]\$ is norm on linear space \$HD[a,b]\$. A function \$d:HD[a,b]\times HD[a,b]\to R\$ defined by \$d\left( f,g \right)=\left\| f-g \right\|\$ for every \$f,g\in HD[a,b]\$ is a matrix on linear space \$HD[a,b]\$. Further more, linear space \$HD[a,b]\$ is linear matrix translation invarian space.}, pages = {85--92} url = {https://ejournal.undip.ac.id/index.php/matematika/article/view/16678} }
Refworks Citation Data :
Last update:
Last update: 2024-11-06 09:57:39