skip to main content

SMALL AREA ESTIMATION METHOD WITH EMPIRICAL BAYES BASED ON BETA BINOMIAL MODEL IN GENERATED DATA

*Ferra Yanuar  -  Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia
Rahmatika Fajriyah  -  Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia
Dodi Devianto  -  Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia
Open Access Copyright (c) 2021 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Small Area Estimation is one of the methods that can be used to estimate parameters in an area that has a small population. This study aims to estimate the value of the binary data parameter using the direct estimation method and an indirect estimation method by using the Empirical Bayes approach. To illustrate the method, we consider three conditions: direct estimator, empirical Bayes (EB) with auxiliary variables, and empirical Bayes without auxiliary variables. The smaller value of Mean Square Error is used to determine the better method. The results showed that the indirect estimation methods (EB method) gave the parameter value that was not much different from the direct estimation value. Then, the MSE values of indirect estimation with an auxiliary variable are smaller than the direct estimation method.
Fulltext View|Download
Keywords: SAE; Empirical Bayes Method; Beta-Binomial Model.

Article Metrics:

  1. Abadi, S. (2011). Pendugaan Statistik Area Kecil Menggunakan Model Beta-Binomial. Tesis, Institut Pertanian Bogor
  2. Ariwijayanthi, P. E., Sumarjaya, I. W., & Bagus Oka, T. (2013). Penerapan Metode Pendugaan Area Kecil (Small Area Estimation) Pada Penentuan Proporsi Rumah Tangga Miskin Di Kabupaten Klungkung. E-Jurnal Matematika, 2(3), 35. https://doi.org/10.24843/MTK.2013.v02.i03.p046
  3. Eka Putri, N. C., Yanuar, F., & Yozza, H. (2019). Metode Bayes Empirik untuk Memodelkan Data Cacahan dengan Peubah Penyerta pada Pendugaan Area Kecil. Jurnal Matematika UNAND, 8(1), 224. https://doi.org/10.25077/jmu.8.1.224-231.2019
  4. Hasanudin, N., Padmadisastra, S., & Hajarisman, N. (2011). Pertimbangan Penting yang Mendasari Penggunaan Metode Small Area Estimation. Prosiding Seminar Nasional Statistika, 2, 218–226
  5. Ikhsan, E., Hidayat, C. A., & Nurizza, W. A. (2018). Studi Kasus: Estimasi Persentase Penduduk Miskin di Provinsi Nusa Tenggara Timur Tahun 2017. Jurnal Aplikasi Statistika & Komputasi Statistik, 1–12
  6. Jiming Jiang & P. Lahiri. (2001). Empirical Bayes Prediction for Small Area Inference with Binary Data. Annals of the Institute of Statistical Mathematics, 53(2)
  7. Juriah, S., Yanuar, F., & Yozza, H. (2019). Pendugaan Penyebaran Penyakit Demam Berdarah Dengue (DBD) Di Kota Padang. Jurnal Matematika UNAND, 8(1), 313. https://doi.org/10.25077/jmu.8.1.313-317.2019
  8. K. Ogundeji, R., J. Adewara, A., & S. Nurudeen, T. (2013). Bayesian Sequential Estimation of Proportion of Orthopaedic Surgery Among Different Age Groups: A Case Study of National Orthopaedic Hospital, Igbobi-Nigeria. International Journal of Statistics and Applications, 2(6), 108–113. https://doi.org/10.5923/j.statistics.20120206.03
  9. Kismiantini. (2010). Penerapan Metode Bayes Empirik Pada Pendugaan Area Kecil Untuk Kasus Biner (Studi tentang Proporsi Status Kepemilikan Kartu Sehat di Kota Yogyakarta). Seminar Nasional Penelitian, Pendidikan Dan Penerapan MIPA, FMIPA Universitas Negeri Yogyakarta
  10. Kusuma, W., Iriawan, N., & Irhamah, I. (2017). Small Area Estimation of Expenditure Per-capita in Banyuwangi with Hierarchical Bayesian and Empirical Bayes Methods. IPTEK Journal of Science, 2(3). https://doi.org/10.12962/j23378530.v2i3.a3185
  11. Maulina, R. F., Djuraidah, A., & Kurnia, A. (2019). Pemodelan Kemiskinan Di Jawa Menggunakan Bayesian Spasial Probit Pendekatan Integrated Nested Laplace Approximation (INLA). Media Statistika, 12(2), 140–151. https://doi.org/10.14710/medstat.12.2.140-151
  12. Molina, I., & Marhuenda, Y. (2015). sae: An R Package for Small Area Estimation. The R Journal, 7(1), 81–98. https://doi.org/10.32614/RJ-2015-007
  13. Noviyanti, R. A., Zain, I., Sarjana, M. P., Hakim, J. A. R., & Timur, J. (2014). Pendekatan Small Area Estimation Pada Scan Statistic Untuk Pendeteksian Kantong Kemiskinan. Prosiding Seminar Nasional Matematika, Universitas Jember, 73–89
  14. Rao, J. N. K., & Molina, I. (2015). Small Area Estimation (Second edition). John Wiley & Sons, Inc
  15. Sari, A. D., & Yanuar, F. (2020). Hierarchical Bayesian Modelling in Small Area for Estimating Binary Data. Journal of Physics: Conference Series, 1554, 012049. https://doi.org/10.1088/1742-6596/1554/1/012049
  16. Torabi, M., Datta, G. S., & Rao, J. N. K. (2009). Empirical Bayes Estimation of Small Area Means under a Nested Error Linear Regression Model with Measurement Errors in the Covariates. Scandinavian Journal of Statistics, 36(2), 355–368. http://www.jstor.org/stable/41000325
  17. Zaja, N., Yozza, H., & Yanuar, F. (2019). Small Area Estimation Dengan Pendekatan Empirical Bayes Berbasis Model Beta-Binomial Untuk Menduga Angka Pengangguran Di Sumatera Barat. Jurnal Matematika UNAND, 8(1), 120. https://doi.org/10.25077/jmu.8.1.120-127.2019

Last update:

No citation recorded.

Last update: 2024-11-02 09:24:07

No citation recorded.