- Abadie, J., & Carpenter, J. (1969). Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints. In R. Fletcher (Ed.), Optimization (pp. 37–47). Academic Press
- Abdalla, S. Z. S., & Winker, P. (2012). Modelling Stock Market Volatility Using Univariate GARCH Models: Evidence from Sudan and Egypt. International Journal of Economics and Finance, 4(8), 161–176
- Altun, E., Tatlidil, H., Ozel, G., & Nadarajah, S. (2018). Does the Assumption on Innovation Process Play An Important Role for Filtered Historical Simulation Model? Journal of Risk Financial Management, 11(1), 7
- Atchade, Y. F., & Rosenthal, J. S. (2005). On Adaptive Markov Chain Monte Carlo Algorithms. Bernoulli, 11(5), 815–828
- Azzalini, A. (2011). Skew-normal Distribution. In M. Lovric (Ed.), International encyclopedia of statistical science. Springer Berlin Heidelberg
- Azzalini, A., & Capitanio, A. (2003). Distributions Generated by Perturbation of Symmetry with Emphasis on A Multivariate Skew t-Distribution. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(2), 367–389
- Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), 307–327
- Bollerslev, T. (1987). A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. The Review of Economics and Statistics, 69(3), 542–547
- Cerqueti, R., Giacalone, M., & Mattera, R. (2020). Skewed Non-Gaussian GARCH Models for Cryptocurrencies Volatility Modelling. Information Sciences, 527, 1–26
- Choi, S. W., & Lam, D. M. H. (2017). Comparing Two Methods-Agreeing to Disagree. Anaesthesia, 72(5), 651–653
- Chu, J., Chan, S., Nadarajah, S., & Osterrieder, J. (2017). GARCH Modelling of Cryptocurrencies. Journal of Risk and Financial Management, 10(4), 17
- Cifter, A. (2012). Volatility Forecasting with Asymmetric Normal Mixture GARCH Model: Evidence from South Africa. Romanian Journal of Economic Forecasting, 15(2), 127–142
- Fernandez, C., & Steel, M. (1998). On Bayesian Modeling of Fat Tails and Skewness. Journal of the American Statistical Association, 93(441), 359–371
- Hansen, P. R., & Lunde, A. (2005). A Forecast Comparison of Volatility Models: Does Anything Beat A GARCH(1,1)? Journal of Applied Econometrics, 20(7), 873–889
- Iqbal, F., & Triantafyllopoulos, K. (2019). Bayesian Inference of Multivariate Rotated GARCH Models with Skew Returns. Communications in Statistics: Simulation and Computation, 0(0), 1–19
- Kusumawati, A. M., Nugroho, D. B., & Sasongko, L. R. (2020). Estimasi volatilitas Melalui Model EGARCH(1,1) Berdistribusi Student-t dan Alpha Skew Normal. Jurnal Ekonomi Kuantitatif Terapan, 13(2), 259–272
- Lasdon, L. S., Fox, R. L., & Ratner, M. W. (1974). Nonlinear Optimization Using the Generalized Reduced Gradient Method. Recherche Opérationnelle, 8(3), 73–103
- Le, H., Pham, U., Nguyen, P., & Pham, T. B. (2020). Improvement on Monte Carlo Estimation of HPD Intervals. Communications in Statistics - Simulation and Computation, 49(9), 2164–2180
- Lee, H., Chen, S., & Kang, H. (2004). A Study of Generalized Reduced Gradient Method with Different Search Directions. Measurement Management Journal, 1(1), 25–38
- Maia, A., Ferreira, E., Oliveira, M. C., Menezes, L. F., & Andrade-Campos, A. (2017). Numerical Optimization Strategies for Springback Compensation in Sheet Metal Forming. In Computational Methods and Production Engineering (pp. 51–82)
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, N. M., Teller, A. H., & Teller, E. (1953). Equations of State Calculations by Fast Computing Machine. The Journal of Chemical Physics, 21, 1087–1091
- Nugroho, D. B. (2018). Comparative Analysis of Three MCMC Methods for Estimating GARCH Models. IOP Conference Series: Materials Science and Engineering, 403(1), 012061
- Nugroho, D. B., Kurniawati, D., Panjaitan, L. P., Kholil, Z., Susanto, B., & Sasongko, L. R. (2019). Empirical Performance of GARCH, GARCH-M, GJR-GARCH and log-GARCH Models for Returns Volatility. Journal of Physics: Conference Series, 1307(1), 012003
- Nugroho, D. B., & Susanto, B. (2017). Volatility Modeling for IDR Exchange Rate Through APARCH Model with Student-t Distribution. AIP Conference Proceedings, 1868(1), 040005
- Nugroho, D. B., Susanto, B., Prasetia, K. N. P., & Rorimpandey, R. (2019). Modeling of Returns Volatility Using GARCH(1,1) Model under Tukey Transformations. Jurnal Akuntansi dan Keuangan, 21(1), 12–20
- Nugroho, D. B., Susanto, B., & Pratama, S. R. (2017). Estimation of Exchange Rate Volatility Using APARCH-type Models: A Case Study of Indonesia (2010–2015). Jurnal Ekonomi dan Ekonomi Studi Pembangunan, 9(1), 65–75
- Nugroho, D. B., Susanto, B., & Rosely, M. M. M. (2018). Penggunaan MS Excel untuk Estimasi Model GARCH(1,1). Jurnal Matematika Integratif, 14(2), 71–83
- Powell, S. G., & Batt, R. J. (2008). Modeling for Insight: A Master Class for Business Analysts. In Modeling for Insight: A Master Class for Business Analysts
- Robert, C., & Casella, G. (2011). A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data. Statistical Science, 26(1), 102–115
- Roberts, G. O., & Rosenthal, J. S. (2009). Examples of Adaptive MCMC. Journal of Computational and Graphical Statististics, 18(2), 349–367
- Roussas, G. G. (1997). A Course in Mathematical Statistics. Second Edition. In Academic Press (Vol. 134, Issue 4)
- Salim, F. C., Nugroho, D. B., & Susanto, B. (2016). Model Volatilitas GARCH(1,1) dengan Error Student-t untuk Kurs Beli EUR dan JPY terhadap IDR. Jurnal MIPA, 39(1), 63–69
- Sartika, Q. R., Widiharih, T., & Mukid, M. A. (2019). Value at Risk Instock Portfolio Using t-Copula. Media Statistika, 12(2), 175–187
- Solomon, J. (2015). Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics. CRC Press,
- Tyas, M. D. P., Maruddani, D. A. I., & Rahmawati, R. (2019). Perhitungan Value at Risk dengan Pendekatan Threshold Autoregressive Conditional Heteroscedasticity-Generalized Extreme Value. Media Statistika, 12(1), 73–85
- Wu, Q., & Vos, P. (2018). Inference and Prediction. In V. N. Gudivada & C. R. Rao (Eds.), Computational Analysis and Understanding of Natural Languages: Principles, Methods and Applications (pp. 131–192). North-Holland
Last update:
-
Modeling and Forecasting Return Volatilities of Inter-Capital Market Indices using GARCH-Fractional Cointegration Model Variation
Magdalena Effendi, Dedy Dwi Prastyo, Muhammad Sjahid Akbar.
Procedia Computer Science,
234 ,
2024.
doi: 10.1016/j.procs.2024.03.019
Last update: 2025-03-31 22:40:47
No citation recorded.
Copyright (c) 2021 MEDIA STATISTIKA
under
http://creativecommons.org/licenses/by-nc-sa/4.0.
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief)
Editorial Office of Media Statistika
Department of Statistics, Universitas Diponegoro
Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275
Telp./Fax: +62-24-7474754
Email: maruddani@live.undip.ac.id