skip to main content

MANAGING HEART RELATED DISEASE RISKS IN BPJS KESEHATAN USING COLLECTIVE RISK MODELS

*Gede Ary Prabha Yogesswara  -  Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
Danang Teguh Qoyyimi  -  Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
Abdurakhman Abdurakhman  -  Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
Open Access Copyright (c) 2022 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
BPJS Kesehatan is a legal entity established to administer the health service program using the insurance system. Heart related diseases is a disease with the largest coverage cost in Indonesia. It can be calculated by using the collective risk model as an approximation of the aggregate loss model. This model is a compound distribution from claim frequency and claim severity, where claim frequency be the primary distributions. The Poisson distribution can be used to the distribution of the heart disease claim frequency. Whereas, the distribution of the heart disease claim severity has a lognormal distribution. The model obtained can explain the aggregate loss of heart disease claims properly.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
MANAGING HEART RELATED DISEASE RISKS IN BPJS KESEHATAN USING COLLECTIVE RISK MODELS
Subject
Type Other
  Download (910KB)    Indexing metadata
Keywords: BPJS Kesehatan; Collective risk model; Heart disease; Lognormal distribution; Poisson distribution

Article Metrics:

  1. Ariawan, I. et al. (2021). Data Sampel BPJS Kesehatan Tahun 2015-2020. Jakarta: BPJS Kesehatan
  2. David, Mihaela and Jemna, Dănuţ-Vasile., 2015. Modeling the Frequency of Auto Insurance Claims by Means of Poisson and Negative Binomial Models. Scientific Annals of the "Alexandru Ioan Cuza" University of Iaşi Economic Sciences, 62(2), pp. 151-168
  3. DJSN and BPJS Kesehatan. (2021). Statistik JKN 2015-2019. Jakarta: DJSN and BPJS Kesehatan
  4. Jayani, D. H. (2020). databoks. [Online] Available at: https://databoks.katadata.co.id/data-publish/2020/08/03/penyakit-katastropik-yang-menelan-biaya-besar-bpjs-kesehatan -2019 [Accessed 6 August 2021]
  5. Katz, R. W. (2002). Stochastic Modeling of Hurricane Damage. Journal of Applied Meteorology. 41 (7), 754-762
  6. Klugman, S. A., Panjer, H.H., and Willwot, G. E. (2012). Loss Models From Data to Decisions. 4th ed. New Jersey: John Wiley and Sons, Inc
  7. Pittara. (2021). Alodokter. [Online] Available at: https://www.alodokter.com/penyakit-jantung [Accessed 24 February 2022]
  8. Septiany, R., Setiawaty, B., and Purnaba, I. G. P. (2020) The Use of Monte Carlo Method to Model the Aggregate Loss Distribution. Al-Jabar: Jurnal Pendidikan Matematika. 11 (1), 179-190
  9. Shevchenko, Pavel. (2010). Calculation of Aggregate Loss Distributions. The Journal of Operational Risk. 5 (2), 3-40
  10. Wang, N., Qian, L., Zhang, N., and Liu, Z. (2019). Modelling the Aggregate Loss for Insurance Claims with Dependence. Communications in Statistics-Theory and Methods. DOI: 10.1080/03610926.2019.1659368

Last update:

No citation recorded.

Last update: 2024-11-20 16:16:44

No citation recorded.