skip to main content

BETA-BINOMIAL MODEL IN SMALL AREA ESTIMATION USING HIERARCHICAL LIKELIHOOD APPROACH

*Etis Sunandi scopus  -  Department of Statistics, IPB University, Indonesia, Indonesia
Khairil Anwar Notodiputro  -  Department of Statistics, IPB University, Indonesia, Indonesia
Indahwati Indahwati  -  Department of Statistics, IPB University, Indonesia, Indonesia
Agus Mohamad Soleh  -  Department of Statistics, IPB University, Indonesia, Indonesia
Open Access Copyright (c) 2023 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Small Area Estimation is a statistical method used to estimate parameters in sub-populations with small or even no sample sizes. This research aims to evaluate the Beta-Binomial model's performance for estimating small areas at the area level. The estimation method used is Hierarchical Likelihood (HL). The data used are simulation data and empirical data. Simulation studies were used to investigate the proposed model. The estimator's Mean Squared Error of Prediction (MSEP) and Absolute Bias (AB) estimator values determine the best estimation criteria. An empirical study using data on the illiteracy rate at the sub-district level in Bengkulu Province. The results of the simulation study show that, in general, the parameter estimators are nearly unbiased. Proportion prediction has the same tendency as parameters. Finally, the HL estimator has a small MSEP estimator. The results of an empirical study show that the average illiteracy rate in Bengkulu province is quite diverse. Kepahiang District has the highest average illiteracy rate in Bengkulu Province in 2021.
Fulltext View|Download
Keywords: Area level; Binary Response; Illiteracy rate; MSEP; Simulation; Small sample

Article Metrics:

  1. Bell, W. R., Chung, H. C., Datta, G. S., & Franco, C. (2019). Measurement Error in Small Area Estimation: Functional Versus Structural Versus Naïve Models. Survey Methodology, 45(1), 61–80
  2. Breidenbach, J., Magnussen, S., Rahlf, J., & Astrup, R. (2018). Unit-Level and Area-Level Small Area Estimation under Heteroscedasticity Using Digital Aerial Photogrammetry Data. Remote Sensing of Environment, 212. https://doi.org/10.1016/j.rse.2018.04.028
  3. Burgard, J. P., Esteban, M. D., Morales, D., & Pérez, A. (2020). A Fay–Herriot Model when Auxiliary Variables are Measured with Error. Test, 29(1), 166–195. https://doi.org/10.1007/s11749-019-00649-3
  4. Burgard, J. P., Esteban, M. D., Morales, D., & Pérez, A. (2021). Small Area Estimation Under A Measurement Error Bivariate Fay–Herriot Model. Statistical Methods and Applications, 30(1), 79–108. https://doi.org/10.1007/s10260-020-00515-9
  5. Chen, J. & Liu, Y. (2019). Small Area Quantile Estimation. International Statistical Review, 87(S1). https://doi.org/10.1111/insr.12293
  6. Ha, l Do, Jeong, J.-H., & Lee, Y. (2017). Statistical Modelling of Survival Data with Random Effects H-Likelihood Approach (M. Gail, J. M. Samet, B. Singer, & A. Tsiatis (eds.)). Springer
  7. Harrison, X. A. (2015). A Comparison of Observation-Level Randomeffect and Beta-Binomial Models for Modelling Overdispersion in Binomial Data in Ecology & Evolution. PeerJ, 2015(7). https://doi.org/10.7717/peerj.1114
  8. Jiang, J. (2007). Linear and Generalized Linear Mixed Models and Their Applications. In Linear and Generalized Linear Mixed Models and Their Applications. Springer. https://doi.org/10.1007/978-0-387-47946-0
  9. Lee, Y., & Nelder, J. A. (1996). Hierarchical Generalized Linear Models. Journal of the Royal Statistical Society: Series B (Methodological), 58(4). https://doi.org/10.1111/j.2517-6161.1996.tb02105.x
  10. Lee, Y., & Nelder, J. A. (2001). Hierarchical Generalised Linear Models: A Synthesis Of Generalised Linear Models, Random-Effect Models And Structured Dispersions. Biometrika, 88(4). https://doi.org/10.1093/biomet/88.4.987
  11. Lee, Y., Nelder, J. A., & Pawitan, Y. (2006). Generalized Linear Models with Random Effects: Unified Analysis via H-Likelihood. In Generalized Linear Models with Random Effects: Unified Analysis via H-Likelihood. https://doi.org/10.1111/j.1467-985x.2007.00485_4.x
  12. Lokonon, B. E. & Senou, M. (2020). Effect of Misspecification of Random Effects Distribution on The Performance of Parameters Estimation Methods in Binary Logistic Mixed Models. Afrika Statistika, 15(1). https://doi.org/10.16929/as/2020.2247.156
  13. McCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models. In Chapman and Hall. https://doi.org/10.1002/bimj.4710290217
  14. Morel, J. G. & Nagaraj, N. K. (1993). A Finite Mixture Distribution for Modelling Multinomial Extra Variation. Biometrika, 80(2). https://doi.org/10.1093/biomet/80.2.363
  15. Najera-Zuloaga, J., Lee, D. J., & Arostegui, I. (2019). A Beta-Binomial Mixed-Effects Model Approach for Analysing Longitudinal Discrete and Bounded Outcomes. Biometrical Journal, 61(3), 600–615. https://doi.org/10.1002/bimj.201700251
  16. Rao, J. N. K. & Molina, I. (2015). Small Area Estimation: Second Edition. In Small Area Estimation: Second Edition. https://doi.org/10.1002/9781118735855
  17. Riley, R. D., Snell, K. I. E., Martin, G. P., Whittle, R., Archer, L., Sperrin, M., & Collins, G. S. (2021). Penalization and Shrinkage Methods Produced Unreliable Clinical Prediction Models Especially when Sample Size was Small. Journal of Clinical Epidemiology, 132. https://doi.org/10.1016/j.jclinepi.2020.12.005
  18. Salvati, N., Fabrizi, E., Ranalli, M. G., & Chambers, R. L. (2021). Small Area Estimation with Linked Data. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 83(1). https://doi.org/10.1111/rssb.12401
  19. Skellam, J. G. (1948). A Probability Distribution Derived from the Binomial Distribution by Regarding the Probability of Success as Variable between the Sets of Trials. Journal of the Royal Statistical Society: Series B (Methodological), 10(2). https://doi.org/10.1111/j.2517-6161.1948.tb00014.x
  20. Statistics Indonesia, B. (2022). Statistik Indonesia, Statistical Yearbook of Indonesia 2022. Badan Pusat Statistik/BPS-Statistics Indonesia
  21. Sunandi, E., Notodiputro, K. A., Indahwati, & Soleh, A. M. (2023). Small Area Estimation of Illiteracy Rates based on Beta-Binomial Model using Hierarchical Likelihood Approach. Mathematics and Statistics, 11(3), 579–585. https://doi.org/10.13189/ms.2023.110315
  22. Wagner, B., Riggs, P., & Mikulich-Gilbertson, S. (2015). The Importance of Distribution-Choice In Modeling Substance Use Data: A Comparison of Negative Binomial, Beta Binomial, and Zero-Inflated Distributions. American Journal of Drug and Alcohol Abuse, 41(6). https://doi.org/10.3109/00952990.2015.1056447
  23. Wu, J. & Bentler, P. M. (2012). Application of H-likelihood to Factor Analysis Models with Binary Response Data. Journal of Multivariate Analysis, 106. https://doi.org/10.1016/j.jmva.2011.09.007
  24. Yanuar, F., Fajriyah, R., & Devianto, D. (2021). Small Area Estimation Method with Empirical Bayes Based on Beta Binomial Model in Generated Data. Media Statistika, 14(1), 1–9. https://doi.org/https://doi.org/10.14710/medstat.14.1.1-9
  25. Ybarra, L. M. R. & Lohr, S. L. (2008). Small Area Estimation when Auxiliary Information is Measured with Error. Biometrika, 95(4), 919–931. https://doi.org/10.1093/biomet/asn048
  26. Youngjo, L., & Kim, G. (2020). Properties of h-Likelihood Estimators in Clustered Data. International Statistical Review, 88(2). https://doi.org/10.1111/insr.12354
  27. Yun, S. & Lee, Y. (2004). Comparison of Hierarchical and Marginal Likelihood Estimators for Binary Outcomes. Computational Statistics and Data Analysis, 45(3). https://doi.org/10.1016/S0167-9473(03)00033-1

Last update:

No citation recorded.

Last update: 2024-12-11 10:40:12

No citation recorded.