skip to main content

PER CAPITA CONSUMPTION ESTIMATION IN SURABAYA USING ENSEMBLE MODEL APPROACH

*Sutikno Sutikno  -  Department of Statistics, Institut Teknologi Sepuluh Nopember, Jl. Teknik Mesin No. 175, Keputih, Kec. Sukolilo, Kota Surabaya, Jawa Timur 60115, Indonesia
Jerry Dwi Trijoyo Purnomo  -  Department of Statistics, Institut Teknologi Sepuluh Nopember, Jl. Teknik Mesin No. 175, Keputih, Kec. Sukolilo, Kota Surabaya, Jawa Timur 60115, Indonesia
Unggul Harfianto  -  Department of Statistics, Institut Teknologi Sepuluh Nopember, Jl. Teknik Mesin No. 175, Keputih, Kec. Sukolilo, Kota Surabaya, Jawa Timur 60115, Indonesia
Yoga Prastya Irfandi  -  Department of Statistics, Institut Teknologi Sepuluh Nopember, Jl. Teknik Mesin No. 175, Keputih, Kec. Sukolilo, Kota Surabaya, Jawa Timur 60115, Indonesia
Kartika Nur Anisa  -  Department of Statistics, Institut Teknologi Sepuluh Nopember, Jl. Teknik Mesin No. 175, Keputih, Kec. Sukolilo, Kota Surabaya, Jawa Timur 60115, Indonesia
Fajar Dwi Cahyoko  -  Department of Statistics, Institut Teknologi Sepuluh Nopember, Jl. Teknik Mesin No. 175, Keputih, Kec. Sukolilo, Kota Surabaya, Jawa Timur 60115, Indonesia
Open Access Copyright (c) 2023 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The categorization of the Low-Income Community category is based on the poverty indicators in the Multidimensional Poverty Index, including the dimensions of health, education, and living standards. The Proxy Means Test (PMT) can estimate household income or consumption by taking into account household conditions that are readily observable and cannot be manipulated. This method offers the advantage of being capable of determining both the poverty level of a household and the household's characteristics based on asset ownership and socio-demographic conditions. This study aims to estimate per capita consumption using OLS, Robust, Quantile, LASSO, and Ensemble methods. The application of these methods is intended to address various issues, including the presence of outlier data, multicollinearity, and uncertainties. The results indicate that none of the four methods used achieved the highest accuracy based on the MSE, MAE, and sMAPE criteria. Consequently, employing an ensemble model becomes essential to accommodate the element of uncertainty present in these four models. The application of the ensemble method is not only as a comparison between the models, but also as a means to capture the uncertainty contained in each model

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (444KB)    Indexing metadata
Keywords: Proxy Mean Test; percapita consumption; ensemble model

Article Metrics:

  1. Amédée-Manesme, C. O., Faye, B., & Fur, E. Le. (2020). Heterogeneity and fine Wine Prices: Application of the Quantile Regression Approach. Applied Economics, 52(26), 2821-2840
  2. Biswas, J., Kulkarni, H., & Das, K. (2017). Quantile Regression in Biostatistics. Biostat Biometrics Open Access Journal, 2(5), 102–105
  3. Blanc, S. M. & Setzer, T. (2016). When to Choose the Simple Average in Forecast Combination. Journal of Business Research, 69(10), 3951–3962
  4. BPS. (2021). Provinsi Jawa Timur Dalam Angka 2021
  5. Breiman, L. (1996). Stacked Regressions. Machine Learning, 24(1), 49–64
  6. Buhai, S. (2004). Quantile Regression: Overview and Selected Applications. Journal of AD Astra, 4(4), 1–16
  7. Chen, C. (2002). Robust Regression and Outlier Detection with the ROBUSTREG Procedure. Proceedings of the Twenty-Seventh Annual SAS Users Group International Conference
  8. Friedman, J., Hastie, T., Hofling, H., & Tibshirani, R. (2007). Pathwise Coordinate Optimization. The Annual of Applied Statistics, 1(2), 302–332
  9. Hastie, T., Tibshirani, R., & Friedman, J. (2016). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics) (2nd ed.). Springer
  10. Hong, H. G., Christiani, D. C., & Li, Y. (2019). Quantile Regression for Survival Data in Modern Cancer Research: Expanding Statistical Tools for Precision Medicine. Precision Clinical Medicine
  11. Houssou, N., Zeller, M., Alcaraz V., G., Schwarze, S., & Johannsen, J. (2007). Proxy Means Tests for Targeting the Poorest Households -- Applications to Uganda. 106th Seminar of the EAAE Pro-Poor Development in Low Income Countries: Food, Agriculture, Trade, and Environment 2, October
  12. Jafarzadeh, A., Pourreza-Bilondi, M., Akbarpour, A., Khashei-Siuki, A., & Samadi, S. (2021). Application of Multi-Model Ensemble Averaging Techniques for Groundwater Simulation: Synthetic and Real-world Case Studies. Journal of Hydroinformatics, 23(6), 1271–1289
  13. Khan, D. M., Ali, M., Ahmad, Z., Manzoor, S., & Hussain, S. (2021). A New Efficient Redescending M-Estimator for Robust Fitting of Linear Regression Models in the Presence of Outliers. Mathematical Problems in Engineering, 2021
  14. Kidd, S. & Wylde, E. (2011). Targeting the Poorest: An Assessment of the Proxy Means Test Methodology. Technical Report Australian Government (Issue September)
  15. Kutner, M., Nachtsheim, C., & Neter, J. (2004). Applied Linear Regression Models (4th ed.). McGraw-Hill Companies, Inc
  16. Lu, M., Hou, Q., Qin, S., Zhou, L., Hua, D., Wang, X., & Cheng, L. (2023). A Stacking Ensemble Model of Various Machine Learning Models for Daily Runoff Forecasting. Water (Switzerland), 15(7)
  17. Lusia, D. A. & Suhartono. (2013). Ensemble Method Based on Two Level ARIMAX- FFNN for Rainfall Forecasting in Indonesia. International Journal of Science and Research, 2(2), 144–149
  18. Mohammed, A., & Kora, R. (2023). A Comprehensive Review on Ensemble Deep Learning: Opportunities and Challenges. Journal of King Saud University - Computer and Information Sciences, 35(2), 757–774
  19. Montgomery, D. C., Peck, E. A., & Vining, G. G. (1992). Introduction to Linear Regression Analysis (2nd ed.). John Wiley & Sons, Inc
  20. Peng, X., Zheng, W., Zhang, D., Liu, Y., Lu, D., & Lin, L. (2017). A Novel Probabilistic Wind Speed Forecasting Based on Combination of the Adaptive Ensemble of On-line Sequential ORELM (Outlier Robust Extreme Learning Machine) and TVMCF (Time-varying Mixture Copula function). Energy Conversion and Management, 138, 587–602
  21. Pratiwi, H., Susanti, Y., & Handajani, S. S. (2018). A Robust Regression by Using Huber Estimator and Tukey Bisquare Estimator for Predicting Availability of Corn in Karanganyar Regency, Indonesia. Indonesian Journal of Applied Statistics, 1(1), 37
  22. Tibshirani, R. (1996). Regression Shrinkage and Selection via the LASSO. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288
  23. Tran, K., Neiswanger, W., Yoon, J., Zhang, Q., Xing, E., & Ulissi, Z. W. (2020). Methods for Comparing Uncertainty Quantifications for Material Property Predictions. Machine Learning: Science and Technology, 1(2)
  24. Vrugt, J. A. & Robinson, B. A. (2007). Treatment of Uncertainty using Ensemble Methods: Comparison of Sequential Data Assimilation and Bayesian Model Averaging. Water Resources Research, 43(1), 1–15
  25. Wang, S., Zhang, N., Wu, L., & Wang, Y. (2016). Wind Speed Forecasting Based on the Hybrid Ensemble Empirical Mode Decomposition and GA-BP Neural Network Method. Renewable Energy, 94, 629–636
  26. Zhang, G. P. (2003). Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing, 50, 159–175
  27. Zhao, P., & Yu, B. (2006). On Model Selection Consistency of LASSO. Journal of Machine Learning Research, 7, 2541–2563

Last update:

No citation recorded.

Last update: 2025-01-19 19:30:12

No citation recorded.