BibTex Citation Data :
@article{Medstat59516, author = {Felinda Arumningtyas and Bambang Otok and Santi Purnami}, title = {RANDOM EFFECTS META-REGRESSION USING WEIGHTED LEAST SQUARES (CASE STUDY: EFFECTIVENESS OF ACCEPTANCE AND COMMITMENT THERAPY IN REDUCING DEPRESSION)}, journal = {MEDIA STATISTIKA}, volume = {18}, number = {1}, year = {2025}, keywords = {ACT; Depression; Meta Analysis; Meta Regression; Random Effect; Weighted Least Square.}, abstract = { Meta-analysis is a statistical method for synthesizing quantitative data from multiple related studies, yet heterogeneity among studies often complicates interpretation. Meta-regression extends this approach by incorporating study-level covariates to explain variations in outcomes. With the global increase in depression, Acceptance and Commitment Therapy(ACT) has attracted attention as an effective psychological intervention. Therefore, a deeper understanding of the factors that influence its effectiveness across studies is needed. However, to date, only a few meta-analyses have quantitatively examined moderator variables that influence ACT outcomes using a random effects meta-regression approach. This study aims to fill this gap. This study estimated the model parameters using the Weighted Least Squares (WLS) method. Thirty-three published studies testing the effectiveness of ACT in reducing depression were collected from PubMed, Google Scholar, and Science Direct. The homogeneity test results showed significant heterogeneity, supporting the use of a random effects model. The combined effect size of -0.321 indicates that ACT significantly reduces depression levels compared to the control group. Meta-regression analysis revealed that variation in effect size was significantly influenced by differences in the average age of patients and duration of therapy. These findings provide new insights into the conditions and characteristics that make ACT therapy more effective. }, issn = {2477-0647}, pages = {49--60} doi = {10.14710/medstat.18.1.49-60}, url = {https://ejournal.undip.ac.id/index.php/media_statistika/article/view/59516} }
Refworks Citation Data :
Meta-analysis is a statistical method for synthesizing quantitative data from multiple related studies, yet heterogeneity among studies often complicates interpretation. Meta-regression extends this approach by incorporating study-level covariates to explain variations in outcomes. With the global increase in depression, Acceptance and Commitment Therapy(ACT) has attracted attention as an effective psychological intervention. Therefore, a deeper understanding of the factors that influence its effectiveness across studies is needed. However, to date, only a few meta-analyses have quantitatively examined moderator variables that influence ACT outcomes using a random effects meta-regression approach. This study aims to fill this gap. This study estimated the model parameters using the Weighted Least Squares (WLS) method. Thirty-three published studies testing the effectiveness of ACT in reducing depression were collected from PubMed, Google Scholar, and Science Direct. The homogeneity test results showed significant heterogeneity, supporting the use of a random effects model. The combined effect size of -0.321 indicates that ACT significantly reduces depression levels compared to the control group. Meta-regression analysis revealed that variation in effect size was significantly influenced by differences in the average age of patients and duration of therapy. These findings provide new insights into the conditions and characteristics that make ACT therapy more effective.
Article Metrics:
Last update:
Last update: 2025-10-17 01:43:59
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief) Editorial Office of Media StatistikaDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: maruddani@live.undip.ac.id
Media Statistika
Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro
Gedung F Lantai 3, Jalan Prof Jacub Rais, Kampus Tembalang
Semarang 50275
Indexing: