skip to main content

STACKING ENSEMBLE APPROACH IN STATISTICAL DOWNSCALING USING CMIP6-DCPP FOR RAINFALL ESTIMATION IN RIAU

*Dani Al Mahkya scopus  -  Actuarial Science Study Program, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Kabupaten Lampung Selatan, Lampung 35365, Indonesia
Anik Djuraidah  -  Department of Statistics, IPB University, Jalan Meranti Wing 22 Level 4, Dramaga, Babakan, Kec. Dramaga, Kabupaten Bogor, Jawa Barat 16680, Indonesia
Aji Hamim Wigena  -  Department of Statistics, IPB University, Jalan Meranti Wing 22 Level 4, Dramaga, Babakan, Kec. Dramaga, Kabupaten Bogor, Jawa Barat 16680, Indonesia
Bagus Sartono  -  Department of Statistics, IPB University, Jalan Meranti Wing 22 Level 4, Dramaga, Babakan, Kec. Dramaga, Kabupaten Bogor, Jawa Barat 16680, Indonesia
Open Access Copyright (c) 2024 MEDIA STATISTIKA under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Rainfall modeling and prediction is one of the important things to do. Rainfall has an important relationship and role with various aspects of the environment. One phenomenon that can be associated with rainfall is forest and land fires. Riau is one of the provinces in Indonesia that has a high potential for forest and land fires. This is because Riau has a large area of peatland. One approach that can be used to estimate rainfall is statistical downscaling. The concept of this approach is to form a functional relationship between global and local data. This research uses CMIP6-DCPP output data that will be used to estimate rainfall at 10 observation stations in Riau. The proposed model in this research is Stacking Ensemble with PC Regression and LASSO Regression in the base model and Multiple Linear Regression in the meta model. This research aims to determine the best CMIP6-DCPP model for estimating rainfall in Riau and increasing the accuracy of rainfall estimates using the Stacking Ensemble approach.
Fulltext View|Download
Keywords: Stacking Ensemble; Statistical Downscaling; Rainfall; Regression; Principal Component; LASSO

Article Metrics:

  1. Asadi-Rahim, B. N., Zarrin, A., Mofidi, A., & Dadashi-Roudbari, A. A. (2023). The prediction of the Precipitation Extremes over Iran for the Next Decade (2021-2028) using eht Decadal Climate Prediction Project contribution to CMIP6 (CMIP6-DCPP). Journal of the Earth and Space Physics, 49(3), 707–725. https://doi.org/10.22059/jesphys.2023.351678.1007474
  2. Berliana, A. U., & Bustamam, A. (2020). Implementation of Stacking Ensemble Learning for Classification of COVID-19 using Image Dataset CT Scan and Lung X-Ray. 2020 3rd International Conference on Information and Communications Technology, ICOIACT 2020, 148–152. https://doi.org/10.1109/ICOIACT50329.2020.9332112
  3. BMKG. (2023). Daftar Istilah Klimatologi. Balai Besar MKG Wilayah III. https://balai3.denpasar.bmkg.go.id/daftar-istilah-musim#
  4. Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-Robert, Y., & Eade, R. (2016). The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geoscientific Model Development, 9(10), 3751–3777. https://doi.org/10.5194/gmd-9-3751-2016
  5. Breiman, L. (1996). Stacked regressions. Machine Learning, 24(1), 49–64. https://doi.org/10.1007/bf00117832
  6. DLHK, R. (2018). Rapat Koordinasi TIM Restorasi Gambut Daerah Prov. RIAU Tahun 2018. Dinas Lingkungan Hidup Dan Kehutanan Provinsi Riau. https://dislhk.riau.go.id/lihat_berita.php?id_berita=6
  7. Ghasemieh, A., Lloyed, A., Bahrami, P., Vajar, P., & Kashef, R. (2023). A novel machine learning model with Stacking Ensemble Learner for predicting emergency readmission of heart-disease patients. Decision Analytics Journal, 7(May). https://doi.org/10.1016/j.dajour.2023.100242
  8. He, R. R., Chen, Y., Huang, Q., & Kang, Y. (2019). LASSO as a tool for downscaling summer rainfall over the Yangtze River Valley. Hydrological Sciences Journal, 64(1), 92–104. https://doi.org/10.1080/02626667.2019.1570210
  9. Huang, Y., Huang, N., & Zhao, Q. (2023). Decadal prediction skill for Eurasian surface air temperature in CMIP6 models. Atmospheric and Oceanic Science Letters, 17(May 2023), 0–4. https://doi.org/10.1016/j.aosl.2023.100377
  10. IPCC. (2023). What is a GCM? IPCC Data Distribution Centre. https://www.ipcc-data.org/guidelines/pages/gcm_guide.html
  11. Jackson, S. (2023). Machine Learning. Bookdown Write HTML, PDF, EPub, and Kindle Books with R Markdown. https://bookdown.org/ssjackson300/Machine-Learning-Lecture-Notes/
  12. Jayapermana, R., Aradea, A., & Kurniati, N. I. (2022). Implementation of Stacking Ensemble Classifier for Multi-class Classification of COVID-19 Vaccines Topics on Twitter. Scientific Journal of Informatics, 9(1), 8–15. https://doi.org/10.15294/sji.v9i1.31648
  13. Jolliffe, I. T. (2002). Principal Component Analysis (Second Edi). Springer Series in Statistics
  14. Konda, G., Chowdary, J. S., Gnanaseelan, C., & Parekh, A. (2023). Improvement in the skill of CMIP6 decadal hindcasts for extreme rainfall events over the Indian summer monsoon region. Scientific Reports, 13(1), 1–13. https://doi.org/10.1038/s41598-023-48268-1
  15. Loganathan, P., & Mahindrakar, A. B. (2021). Statistical downscaling using principal component regression for climate change impact assessment at the Cauvery river basin. Journal of Water and Climate Change, 12(6), 2314–2324. https://doi.org/10.2166/wcc.2021.223
  16. Monerie, P. A., Robson, J. I., Ndiaye, C. D., Song, C., & Turner, A. G. (2023). CMIP6 skill at predicting interannual to multi-decadal summer monsoon precipitation variability. Environmental Research Letters, 18(9). https://doi.org/10.1088/1748-9326/acea96
  17. PCMDI. (2024). ESGF CMIP6 DCPP Data Holdings. DCPP Model List. https://pcmdi.llnl.gov/CMIP6/ArchiveStatistics/esgf_data_holdings/DCPP/index.html
  18. Rencher, A. C., & Schaalje, G. B. (2007). Linear Models in Statistics. In Linear Models in Statistics. https://doi.org/10.1002/9780470192610
  19. Sahriman, S., Djuraidah, A., & Wigena, A. H. (2014). Application of Principal Component Regression with Dummy Variable in Statistical Downscaling to Forecast Rainfall. Open Journal of Statistics, 04(09), 678–686. https://doi.org/10.4236/ojs.2014.49063
  20. Sahriman, S., & Yulianti, A. S. (2023). Statistical Downscaling Model With Principal Component Regression and Latent Root Regression To Forecast Rainfall in Pangkep Regency. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(1), 0401–0410. https://doi.org/10.30598/barekengvol17iss1pp0401-0410
  21. Santri, D., & Hanike, Y. (2020). Pemodelan Statistical Downscaling dengan Regresi Kuantil Komponen Utama Fungsional untuk Prediksi Curah Hujan Ekstrim. MAP Journal, 2(1), 47–57
  22. Sunarko, B., Hasanah, U., Hidayat, S., Muhammad, N., Ardiansyah, M. I., Hakiki, M. K., Ananda, B. P., & Baroroh, T. (2023). Penerapan Stacking Ensemble Learning untuk Klasifikasi Efek Kesehatan Akibat. Edu Komputika Journal, 10(1), 55–63. https://doi.org/https://doi.org/10.15294/edukomputika.v10i1.72080
  23. Susilawati, S., & Didiharyono, D. (2023). Application of Principal Component Regression in Analyzing Factors Affecting Human Development Index. Jurnal Varian, 6(2), 199–208. https://doi.org/10.30812/varian.v6i2.2366
  24. Tibshirani, R. (1996). Regression Shrinkage and Selection via the LASSO. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288
  25. Wigena, A. H., & Djuraidah, A. (2022). Monograph Pengembangan Statistical Downscaling untuk Peningkatan Akurasi Prediksi Curah Hujan. IPB Press
  26. Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1
  27. Yunianto, A. S. (2021). Pemetaan Permasalahan Kebakaran Hutan dan Lahan Kasus di Provinsi Riau. Jurnal Penelitian Kehutanan Sumatrana, 2(1), 25–37. https://doi.org/10.20886/jpks.2021.2.1.25-37
  28. Yunus, M., Saefuddin, A., & Soleh, A. M. (2020). Pemodelan Statistical Downscaling Dengan LASSO dan Group LASSO untuk Pendugaan Curah Hujan. 649–660
  29. Yusuf, A., Hapsoh, H., Siregar, S. H., & Nurrochmat, D. R. (2019). Analisis Kebakaran Hutan Dan Lahan Di Provinsi Riau. Dinamika Lingkungan Indonesia, 6(2), 67. https://doi.org/10.31258/dli.6.2.p.67-84
  30. Zhang, Y., Liu, J., & Shen, W. (2022). A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Applied Sciences (Switzerland), 12(17). https://doi.org/10.3390/app12178654

Last update:

No citation recorded.

Last update: 2024-12-26 07:50:25

No citation recorded.