skip to main content


*Sri Hapsari Budisulistiorini  -  Environmental Engineering Department

Citation Format:
Energy  from  renewables  has  been  sought  to  replace  current  fossil  fuel  energy  generation. Landfill gas has great potential to generate power since it contains methane 40 to 60%. Utilizing an enhanced landfill  gas as fuel for  power generator is also  beneficial to reduce greenhouse gas  emission  from landfill  otherwise  it  will  escape  to  the  atmosphere.  Current  technology  in power  generation  from landfill  gas  includes  organic  rankine  cycle  (ORC)  and  stirling  cycle engine  (SCE)  to  add  the traditional  reciprocating  internal  combustion  engine  (ICE)  and  gas turbine  (GT).  The  state-of-the art  power  generation  technologies  have  been  developed  and demonstrated  in  the  US  whereas  in Australia,  landfill  gas  power  plant  remains  with  the conventional ones; reciprocating engine and gas turbine.
Fulltext View|Download
Keywords: landfill gas, bioreactor landfill, electricity generation, engine

Article Metrics:

Last update:

No citation recorded.

Last update: 2023-09-29 12:24:33

  1. Sustainable solid waste management in developing countries: a study of institutional strengthening for solid waste management in Johannesburg, South Africa

    Serge Kubanza N.. Journal of Environmental Planning and Management, 63 (2), 2020. doi: 10.1080/09640568.2019.1576510
  2. Synthesis of large-scale bio-hydrogen network using waste gas from landfill and anaerobic digestion: A p-graph approach

    Hemmati S.. Processes, 8 (5), 2020. doi: 10.3390/PR8050505
  3. Waste power plant based on methane gas at Tamangapa Landfill Makassar: A potential study

    Yusran . IOP Conference Series: Earth and Environmental Science, 127 (1), 2020. doi: 10.1088/1755-1315/473/1/012101
  4. Evaluation of energy potential of Municipal Solid Waste from African urban areas

    Scarlat N.. Renewable and Sustainable Energy Reviews, 50 , 2015. doi: 10.1016/j.rser.2015.05.067
  5. Financial and economic appraisal of a biogas to electricity project

    Govender I.. Journal of Cleaner Production, 127 , 2019. doi: 10.1016/j.jclepro.2018.12.290
  6. Economic and environment feasibility of landfill gas project in Indonesia

    Mahful R.. IOP Conference Series: Materials Science and Engineering, 127 (1), 2018. doi: 10.1088/1757-899X/403/1/012018
  7. Municipal solid waste management in South Africa: from waste to energy recovery through waste-to-energy technologies in Johannesburg

    Dlamini S.. Local Environment, 24 (3), 2019. doi: 10.1080/13549839.2018.1561656
  8. Overview of environmental impacts, prospects and policies for renewable energy in Taiwan

    Tsai W.. Renewable and Sustainable Energy Reviews, 9 (2), 2005. doi: 10.1016/j.rser.2004.01.014
  9. Evaluation of power plants technologies using multicriteria methodology Macbeth

    Andrade G.. IEEE Latin America Transactions, 14 (1), 2016. doi: 10.1109/TLA.2016.7430079
  10. Capabilities, difficulties and obstacles for ‘energy recovery from MSW’ as a sustainable option for waste management in Iran

    Rahimi E.. WIT Transactions on Ecology and the Environment, 127 , 2014. doi: 10.2495/ESUS140701
  11. Carbon emission and energy potential of a novel spatiotemporally anaerobic/semi-aerobic bioreactor for domestic waste treatment

    Shi R.. Waste Management, 114 , 2020. doi: 10.1016/j.wasman.2020.06.040
  12. Kirkuk municipal waste to electrical energy

    Mustafa S.S.. International Journal of Electrical Power and Energy Systems, 44 (1), 2013. doi: 10.1016/j.ijepes.2012.07.053