skip to main content

Determination of Air Quality Protection and Management Strategic Area : Case Study of Tangerang City

Septepanus Gala Bontong orcid  -  Institut Teknologi Nasional, Indonesia
*Didin Agustian Permadi  -  Institut Teknologi Nasional, Indonesia
Precious Benjamin  -  Clean Air Asia, Philippines

Citation Format:
Abstract

Metropolitan cities are often associated with anthropogenic activities that affect air quality. Tangerang, as a buffer city in the Greater Jakarta area, needs control strategies to tackle  severe air pollution problem. Government Regulation No. 22/2021 requires the establishment of Air Quality Protection and Management Areas (AQPMA) in every city, including Tangerang. The determination of AQPMA involve emissions inventories, air quality, population density, land use, and meteorological conditions, using secondary data and air quality modeling with AERMOD. The results of the emission inventory show that the largest contribution comes from the manufacturing and road transportation industries, with NOx 19,747, CO 556,341, PM10 27,001, PM2.5 22,080, SO2 2,233, and NMVOC 295,482 (in Gigagrams/year). The result of the air model  then accordance with measurements at AQMS Pasir Jaya in 2022. The average annual concentration results at this station are NOx 35, CO 1,200, PM10 38, PM2.5 39, and SO2 7.5 (in μg/m3). Ciledug is the sub-district with the highest population density, which is 19,233 people/km2. Based on AQPMA scores, eight very high-risk sub-districts must be a priority in mitigating clean air in Tangerang. A similar approach can be used in other cities to map vulnerability to air pollution as mandated by AQPMA.

Fulltext View|Download
Keywords: Air Quality; air quality model; aqpma; emission inventory; risk level

Article Metrics:

  1. Abdul Rahman, SR., Ismail, SNS., Sahani, M., Ramli, MF. and Latif, MT., 2017. A case crossover analysis of primary air pollutants association on acute respiratory infection (ARI) among children in urban region of Klang valley, Malaysia. Annals of Tropical Medicine and Public Health, 10, pp. 44–55
  2. Afifah, A., 2022. Analisis spasial wilayah perlindungan dan pengelolaan mutu udara berbasis sistem informasi geografis (Studi Kasus: Kota Metro). Institut Teknologi Sumatera, Lampung
  3. Agustian Permadi, D., Dirgawati, M., Ghani Kramawijaya, A. and Hermawan, W., 2020. Preliminary estimation on air pollution load over Bogor City towards development of clean air action plan. Jurnal Ecolab, 14, pp. 53–62
  4. Beck, P., 1984. Air pollution control policy in the Federal Republic of Germany as a strategy for dealing with environmental risks. Environment International, 10, pp. 463–473
  5. Borck, R. and Schrauth, P., 2021. Population density and urban air quality. Regional Science and Urban Economics, 86, p. 103596
  6. Boylan, JW. and Russell, AG., 2006. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmospheric Environment, 40, pp. 4946–4959
  7. Dave, PN., Sahu, LK., Tripathi, N., Bajaj, S., Yadav, R. and Patel, K., 2020. Emissions of non-methane volatile organic compounds from a landfill site in a major city of India: impact on local air quality. Heliyon, 6, p. e04537
  8. Demirarslan, KO., Çetin Doğruparmak and Karademir, A., 2017. Evaluation of three pollutant dispersion models for the environmental assessment of a district in Kocaeli, Turkey. Global NEST Journal, 19, pp. 37–48
  9. Directorate of Air Pollution Control, 2020. Laporan kinerja direktorat pengendalian pencemaran udara. Indonesia
  10. Directorate of Air Pollution Control, 2021. Laporan kinerja direktorat pengendalian pencemaran udara. Indonesia
  11. Directorate of Air Pollution Control, 2022. Laporan kinerja direktorat pengendalian pencemaran udara
  12. Directorate of Air Pollution Control, 2023. Laporan kinerja direktorat pengendalian pencemaran udara. Indonesia
  13. EPA, 1991. Guidance for regulatory application of the urban airshed model (UAM). Office of Air Quality Planning and Standards, US Environmental Protection
  14. ERA5, 2024. Hourly data on pressure levels from 1940 to present [online]. Available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form [Accessed 9 March 2024]
  15. Frank Pasquill, 1961. The estimation of the dispersion of windborne material. The Meteorological Magazine
  16. Frianto, D., Sutrisno, E. and Wahyudi, A., 2023. Pelaku industri dalam pengendalian emisi dan standardisasi. STANDAR Better Standards, Better Living, 2, pp. 41–44
  17. Government Regulation, 2021. Government regulation number 22 of 2021 about concerning the implementation of environmental protection and management. Indonesia
  18. Hadi, MA., Putri, NA., Shofy, YF., Gafuraningtyas, D. and Wibowo, A., 2023. Spatial multi criteria evaluation sebagai pemodelan spasial untuk kesesuaian pengembangan kawasan permukiman di Bogor Raya. Geomedia Majalah Ilmiah dan Informasi Kegeografian, 21, pp. 73–85
  19. Hardie, RW., Thayer, GR. and Barrera-Roldán, A., 1995. Development of a methodology for evaluating air pollution options for improving the air quality in Mexico City. Science of the Total Environment, 169, pp. 295–301
  20. Heald, CL. and Spracklen, DV., 2015. Land use change impacts on air quality and climate. Chemical Reviews
  21. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R. and Schepers, D., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, pp. 1999–2049
  22. Karppinen, A., Joffre, SM. and Kukkonen, J., 2000. Refinement of a meteorological pre-processor for the urban environment. International Journal of Environmental Pollution, 14, pp. 565–572
  23. Ku-Mahamud, KR. and Khor, JY., 2009. Pattern extraction and rule generation of forest fire using sliding window technique. Computer and Information Science, 2, p. 113
  24. Kuo, PH., Ni, PC., Keats, A., Tsuang, BJ., Lan, YY., Lin, MD., Chen, CL., Tu, YY., Chang, LF. and Chang, KH., 2009. Retrospective assessment of air quality management practices in Taiwan. Atmospheric Environment, 43, pp. 3925–3934
  25. Leinawati, T., Soemirat, J. and Dirgawati, M., 2013. Identifikasi karakteristik anorganik PM10 terhadap mortalitas dan morbiditas di udara ambien pada kawasan permukiman. Jurnal Reka Lingkungan, 1, pp. 35–45
  26. Lestari, P., Damayanti, S. and Arrohman, MK., 2020. Emission inventory of pollutants (CO, SO2, PM2.5, and NOX) in Jakarta, Indonesia. In: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing
  27. Majumdar, D., Purohit, P., Bhanarkar, AD., Rao, PS., Rafaj, P., Amann, M., Sander, R., Pakrashi, A. and Srivastava, A., 2020. Managing future air quality in megacities: Emission inventory and scenario analysis for the Kolkata Metropolitan City, India. Atmospheric Environment, 222
  28. Marwasta, D. and Nurhidayat, M., 2019. Thermal comfort and settlements quality for eco-settlement based management in Yogyakarta. In: E3S Web of Conferences. EDP Sciences
  29. Ministry of Forestry, 2013. Peraturan direktur jenderal bina pengelolaan daerah aliran sungai dan perhutanan sosial nomor P.3/V-SET/2013 tentang pedoman identifikasi karakteristik daerah aliran sungai. Indonesia
  30. Namara, I., Hartono, DM. and Moersidik, SS., 2020. The effect of land use change on the water quality of Cisadane River of the Tangerang City. Journal of Engineering and Applied Sciences, 15, pp. 2128–2134
  31. Nauli, T., 2002. Pola sebaran polutan dari cerobong asap. In: Prosiding Pertemuan Dan Presentasi Ilmiah Penelitian Dasar Ilmu Pengetahuan Dan Teknologi Nuklir P3TM-BATAN Yogyakarta. Yogyakarta, pp. 313–320
  32. Negm, A., Minacapilli, M. and Provenzano, G., 2017. Spatial disaggregation of POWER-NASA air temperatures and effects on grass reference evapotranspiration in Sicily, Italy. In: EGU General Assembly Conference Abstracts, p. 13591
  33. Norco, JE. and Cohen, AS., 1973. Modelling emission control strategies: the ‘London law’ in Chicago. In: VDI VERLAG-GMBH. Düsseldorf, Germany
  34. Nurdjanah, N., 2014. Emisi CO2 akibat kendaraan bermotor di Kota Denpasar. Jurnal Transportasi Darat, 16, pp. 189–202
  35. Power NASA, 2024. Prediction of worldwide energy resources data base (temperature, wind direction, wind speed, rainfall, humidity) [online]. Available at: https://power.larc.nasa.gov/data-access-viewer/ [Accessed 9 March 2024]
  36. Ramadan, BS., Rachman, I. and Matsumoto, T., 2022. Activity and emission inventory of open waste burning at the household level in developing countries: a case study of Semarang City. Journal of Material Cycles and Waste Management, 24, pp. 1194–1204
  37. Rouhi, M., Moradi, H. and Ghorban, M., 2013. Application of the AERMOD modelling system for air pollution dispersion in the South Pars oilfield. In: First International Symposium on Urban Development: Koya as a Case Study. WIT Press, Southampton, UK, pp. 339–346
  38. Seinfeld, JH. and Pandis, SN., 2016. Atmospheric chemistry and physics: From air pollution to climate change. Hoboken: John Wiley & Sons
  39. Singh, RP. and Dey, S., 2012. Influence of aerosol composition on visibility in megacity Delhi. Atmospheric Environment, 62, pp. 367–373
  40. Sonwani, S., Kumar, R. and Jain, VK., 2013. Characteristics of black carbon over urban and rural sites of megacity Delhi: impact of meteorology. Atmosfera, 26, pp. 401–416
  41. Stull, RB., 1988. An introduction to boundary layer meteorology. Springer Netherlands
  42. Suryadi, DS. and Waluyo, W., 2019. Pengaruh penggunaan bahan bakar LPG dan dampak pencemaran gas rumah kaca di Kota Bandar Lampung. Jurnal Teknik Sipil Terapan, 7, pp. 35–47
  43. Suwignyo, B., 2019. Peraturan Menteri Lingkungan Hidup Dan Kehutanan Republik Indonesia Nomor P.15/MENLHK/SETJEN/KUM.1/4/2019 Tentang Standard Quality Of Air Pollution Emission For Motorized Vehicles Type Test, KLHK Indonesia
  44. Tiwari, S., Srivastava, AK., Bisht, DS., Bano, T., Singh, S., Behra, SK. and Srivastava, MK., 2013. Mixing height and its impact on air quality over Delhi, India. Natural Hazards, 65, pp. 995–1009
  45. Valavanidis, A., Fiotakis, K. and Vlachogianni, T., 2008. Air pollution as a significant cause of diseases and premature death. In: Green Energy and Technology. Springer, Berlin, Heidelberg
  46. WHO, 2005. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Geneva, Switzerland: World Health Organization
  47. WHO, 2018. Air pollution and child health: Prescribing clean air. Geneva, Switzerland: World Health Organization
  48. WHO, 2020. Ambient (outdoor) air pollution [online]. Available at: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health [Accessed 9 March 2024]
  49. Woodcock, J., Edwards, P., Tonne, C., Armstrong, BG., Ashiru, O., Banister, D., Beevers, S., Chalabi, Z., Chowdhury, Z., Cohen, A., Franco, OH., Haines, A., Hickman, R., Lindsay, G., Mittal, I., Mohan, D., Tiwari, G., Woodward, A. and Roberts, I., 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: Urban land transport. The Lancet, 374, pp. 1930–1943
  50. Wu, X., Nethery, RC., Sabath, BM., Braun, D. and Dominici, F., 2020. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. Science Advances, 6, p. eabd4049
  51. Xu, H., Duan, H., Wang, X., Zhao, W., He, P. and Zhang, L., 2022. Impacts of waste management systems on global warming and air pollution: A case study of Beijing, China. Journal of Cleaner Production, 351, p. 131392
  52. Zhang, Q., Jiang, X., Tong, D., Davis, SJ., Zhao, H., Geng, G., Feng, T., Zheng, B., Lu, Z., Streets, DG., Ni, R., Brauer, M., van Donkelaar, A., Martin, RV., Huo, H., Liu, Z., Pan, D., Kan, H., Yan, Y., Lin, J., He, K. and Guan, D., 2017. Transboundary health impacts of transported global air pollution and international trade. Nature, 543, pp. 705–709

Last update:

No citation recorded.

Last update: 2025-01-27 19:28:25

No citation recorded.