skip to main content

Cellulose Hydrolysis of Mask Waste Using Aspergillus niger and Eco-Friendly Microwave Pretreatment

Adam Gilbran orcid  -  Universitas Diponegoro, Indonesia
Syahraini Nafilah  -  Universitas Diponegoro, Indonesia
Afina Rista Layalia  -  Universitas Diponegoro, Indonesia
Wifqul Muna Arsyad  -  Universitas Diponegoro, Indonesia
Andi Darmawan  -  Universitas Diponegoro, Indonesia
Risqi Prastianto Setiawan  -  Universitas Diponegoro, Indonesia
Risnu Irviandi  -  Universitas Diponegoro, Indonesia
Endang Kusdiyantini  -  Universitas Diponegoro, Indonesia
Aida Habibah Nurauliyaa  -  Universitas Diponegoro, Indonesia
Martin Anda  -  Murdoch University, Australia
Nugroho Adi Sasongko  -  Universitas Pertahanan Republik Indonesia, Indonesia
*Yoyon Wahyono orcid  -  National Research and Innovation Agency, Indonesia

Citation Format:
Abstract

The management of used medical mask waste has become a significant issue due to the increased volume of waste during and after the pandemic. Medical mask waste contains cellulose compounds that can be converted into derivatives such as glucose, which are then processed into bioethanol as an alternative energy source. This study aims to hydrolyse medical mask waste using cellulase enzymes from Aspergillus Niger to produce glucose. The cellulase enzyme composition was varied (5 ml, 15 ml, and 25 ml) to determine the optimal hydrolysis conditions. The glucose produced was measured using DNS reagent assay with spectrophotometry at a wavelength of 540 nm. The highest amount of glucose was obtained under optimal conditions with 25 ml of cellulase enzyme after 48 hours of hydrolysis, amounting to 88.16 ppm. Subsequently, the glucose from hydrolysis was fermented using Saccharomyces cerevisiae, and the fermentation product was analysed for ethanol concentration using GC-FID. The products of fermentation ware 0.017% ethanol concentration from mask waste fermentation. Hydrolysis is an environmentally friendly alternative solution for handling mask waste.

Fulltext View|Download
Keywords: Aspergillus niger; hydrolysis; mask waste

Article Metrics:

  1. Abdel-Aziz, S.M., Abo Elsoud, M.M. & Anise, A.A., 2017. Microbial biosynthesis: a repertory of vital natural products. Food Biosynthesis, 1, pp.25
  2. Aprilyanti, S., Suryani, F. & Pratiwi, I., 2019. Optimasi waktu hidrolisis dan volume enzim pada proses hidrolisis enzimatis selulosa jerami padi. Indonesian Journal of Industrial Research, 2(2), pp.78–86
  3. Bowley, J. et al., 2021. Oceanic hitchhikers–assessing pathogen risks from marine microplastic. Trends in Microbiology, 29(2), pp.107–116
  4. Cordova, M.R. et al., 2021. Unprecedented plastic-made personal protective equipment (PPE) debris in river outlets into Jakarta Bay during COVID-19 pandemic. Chemosphere, 268, 129360
  5. Dey, S. et al., 2023. Microbial strategies for degradation of microplastics generated from COVID-19 healthcare waste. Environmental Research, 216, 114438
  6. Dharmaraj, S. et al., 2021. The COVID-19 pandemic face mask waste: a blooming threat to the marine environment. Chemosphere, 272, 129601
  7. Dharmaraj, S. et al., 2021. RETRACTED: Pyrolysis: An effective technique for degradation of COVID-19 medical wastes. Chemosphere, 275, 130092
  8. Fatima, N. et al., 2024. The effect of glucose, temperature and pH on bioethanol production by Saccharomyces cerevisiae. Journal of Population Therapeutics and Clinical Pharmacology, 31(1), pp.656–667
  9. Hilakore, M.A., Suryahadi, W.I. & Mangunwidjaja, D., 2013. Peningkatan kadar protein putak melalui fermentasi oleh kapang Trichoderma reesei. Jurnal VET, 14(2), pp.250–254
  10. Hussein, Z.A. et al., 2022. The yield of gasoline range hydrocarbons from plastic waste pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), pp.718–731
  11. Idiawati, N., Harfinda, E.M. & Arianie, L., 2014. Produksi enzim selulase oleh Aspergillus niger pada ampas sagu. Jurnal Natur Indonesia, 16(1), pp.1–9
  12. Kodri, K., Argo, B.D. & Yulianingsih, R., 2013. Pemanfaatan enzim selulase dari Trichoderma reseei dan Aspergillus niger sebagai katalisator hidrolisis enzimatik jerami padi dengan pretreatment microwave. Jurnal Bioproses Komoditas Tropis, 1(1), pp.36–43
  13. Kunjapur, A.M. & Prather, K.L., 2015. Microbial engineering for aldehyde synthesis. Applied and Environmental Microbiology, 81(6), pp.1892–1901
  14. Li, J. et al., 2021. Bioleaching metals from waste electrical and electronic equipment (WEEE) by Aspergillus niger: a review. Environmental Science and Pollution Research, 28(33), pp.44622–44637
  15. Li, Q. et al., 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine, 382(13), pp.1199–1207
  16. Mansur, A.R. et al., 2022. Determination of ethanol in foods and beverages by magnetic stirring-assisted aqueous extraction coupled with GC-FID: A validated method for halal verification. Food Chemistry, 366, 130526
  17. Mulligan, C.N., Kamali, M. & Gibbs, B.F., 2004. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. Journal of Hazardous Materials, 110(1–3), pp.77–84
  18. Piazza, V. et al., 2022. Ecosafety screening of photo-fenton process for the degradation of microplastics in water. Frontiers in Marine Science, 8, 791431
  19. Pratama, A. et al., 2021. Limbah masker di era pandemi: kejahatan meningkat atau menurun? Jurnal Green Growth dan Manajemen Lingkungan, 10(1), pp.51–58
  20. Puran, D.H., Purnama & Sumarsih, S., 2015. Produksi enzim selulase dari Aspergillus niger menggunakan sekam padi. Jurnal Ilmu Dasar, 16(2), pp.95–102
  21. Rachdianti, Z. et al., 2021. Pemanfaatan Gelombang Mikro dalam Pre-treatment Limbah Masker Menjadi Bioetanol dengan Katalis Enzim Trichoderma reesei. Prosiding Semnastek
  22. Riaz, Z. et al., 2023. Effects of microplastic pollution on marine environment: a mini review. Journal of Zoology and Systematics, pp.1–9
  23. Ruswandi, R., Oktavia, B. & Azhar, M., 2018. Penentuan Kadar Fruktosa Hasil Hidrolisis Inulin dengan DNS sebagai Pengoksidasi. J. Eksakta Berkala Ilmiah Bidang MIPA, 19(1), pp.14–23
  24. Saadat, S., Rawtani, D. & Hussain, C.M., 2020. Environmental perspective of COVID-19. Science of the Total Environment, 728, 138870
  25. Sajjad, M. et al., 2022. Microplastics in the soil environment: A critical review. Environmental Technology & Innovation, 27, 102408
  26. Salman, S. et al., 2022. Pengaruh fermentasi tepung kulit kopi oleh Aspergillus niger dengan penambahan dua variasi konsentrasi urea dan amonium sulfat menggunakan dua teknik fermentasi terhadap serat kasar. Journal of Pharmaceutical and Sciences, 5(2), pp.156–169
  27. Sandri, I.G. et al., 2013. Use of pectinases produced by a new strain of Aspergillus niger for the enzymatic treatment of apple and blueberry juice. LWT–Food Science and Technology, 51(2), pp.469–475
  28. Sari, M.M. et al., 2022. Identification of face mask waste generation and processing in tourist areas with thermo-chemical process. Archives of Environmental Protection, 48(2)
  29. Sethia, P., Nandhini, D. & Amutha, S., 2024. Effects of marine microplastic on marine life and the food webs–A detailed review. Marine Ecology, 45(5), e12819
  30. Singh, A. et al., 2021. An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresource Technology Reports, 14, 100652
  31. Sitompul, H. & Putra, D.R., 2016. Pengaruh waktu dan konsentrasi enzim selulase pada proses hidrolisis tandan kosong kelapa sawit menjadi glukosa. Analit: Analytical and Environmental Chemistry, 1(1), pp.8–16
  32. Siva, D. et al., 2022. Enhanced cellulase enzyme production by Aspergillus niger using cellulase/iron oxide magnetic nano-composites. Journal of King Saud University–Science, 34(1), 101695
  33. Sun, D. et al., 2022. Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: A review. Carbohydrate Polymers, 281, 119050
  34. Sun, X., Liu, Z., Shi, L. & Liu, Q., 2022. Pyrolysis of COVID-19 disposable masks and catalytic cracking of the volatiles. Journal of Analytical and Applied Pyrolysis, 163, 105481
  35. Thevarajan, I. et al., 2020. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature Medicine, 26(4), pp.453–455
  36. Vitorino, L.C. & Bessa, L.A., 2017. Technological microbiology: development and applications. Frontiers in Microbiology, 8, 827
  37. Walker, G.M. & Stewart, G.G., 2016. Saccharomyces cerevisiae in the production of fermented beverages. Beverages, 2(4), 30
  38. World Health Organization (WHO), 2020. Penggunaan masker dalam konteks COVID-19. World Health Organization
  39. Wu, Y.C., Chen, C.S. & Chan, Y.J., 2020. The outbreak of COVID-19: An overview. Journal of the Chinese Medical Association, 83(3), pp.217–220
  40. Ya-Di, Z. et al., 2022. Review and future trends of soil microplastics research: visual analysis based on Citespace. Environmental Sciences Europe, 34(1), 122
  41. Yamakawa, C.K. et al., 2023. Recovery and characterization of cellulosic ethanol from fermentation of sugarcane bagasse. Chemical Engineering Research and Design, 196, pp.568–576

Last update:

No citation recorded.

Last update: 2025-11-30 12:10:26

No citation recorded.