skip to main content

Mengungkap Pembangunan Kota Berkelanjutan: Studi Bibliometrik pada Infrastruktur Energi Terbarukan Perkotaan

*Caesaryo Arif Wibowo  -  Institut Teknologi Sepuluh Nopember, Indonesia
Alfrida Ista Anindya  -  Institut Teknologi Sepuluh Nopember, Indonesia
Khafizh Salsabila Widya  -  Institut Teknologi Sepuluh Nopember, Indonesia

Citation Format:
Abstract

Urbanisasi dan perkembangan kota yang cepat, diiringi dengan permintaan pemenuhan infrastruktur perkotaan yang meningkat. Dalam upaya pemenuhan infrastruktur perkotaan, mayoritas masih menggunakan infrastruktur energi tak terbarukan. Hal tersebut mendorong munculnya berbagai dampak dari perubahan iklim. Dalam mengatasi kondisi tersebut terdapat inovasi pemenuhan infrastruktur dengan energi terbarukan. Penelitian ini bertujuan untuk menganalisis secara bibliometrik bagaimana perkembangan dan apa saja topik paling sering dibahas terkait pemanfaatan energi terbarukan dalam infrastruktur perkotaan. Studi bibiliometrik dilakukan dengan pengumpulan data base artikel ilmiah dan analisis menggunakan VOSViewer. Hasil studi bibliometric menunjukkan bahwa pemanfaatan energi terbarukan pada infrastruktur perkotaan paling banyak tercatat berasal dari Asia dan Afrika dengan topik popular adalah infrastruktur dan sistem, pembangunan perkotaan, pemanfaatan energi, dan kajian bangunan berkaitan dengan implementasi dari pembangunan infrastruktur. Selain itu, hasil penenlitian juga membahas topik bagaimana integrasi adanya infrastruktur dengan pemanfaatan energi terbarukan, pengembangan infrastruktur perkotaan memanfaatkan energi terbarukan dengan konsep smart city, kapasitas dan skema penyediaan infrastruktur perkotaan dengan energi terbarukan dan mengenai kebijakan penyediaannya.

Fulltext
Keywords: Infrastktur Perkotaan, Energi Terbarukan, Analisis Bibliometrik

Article Metrics:

  1. Adefarati, T., & Bansal, R. C. (2016). Integration of Renewable Distributed Generators Into the Distribution System: a Review. IET Renewable Power Generation, 10(7), 873–884. https://doi.org/10.1049/IET-RPG.2015.0378
  2. Ashtari, A., Bibeau, E., Shahidinejad, S., & Molinski, T. (2012). PEV Charging Profile Prediction and Analysis Based on Vehicle Usage Data. IEEE Transactions on Smart Grid, 3(1), 341–350. https://doi.org/10.1109/TSG.2011.2162009
  3. Asia Development Bank. (2018). Strategi 2030: Mencapai Asia dan Pasifik yang Makmur, Inklusif, Tangguh, dan Berkelanjutan. https://doi.org/http://dx.doi.org/10.22617/TCS189401-2
  4. Baccioli, A., Bargiacchi, E., Barsali, S., Ciambellotti, A., Fioriti, D., Giglioli, R., & Pasini, G. (2020). Cost Effective Power-to-X Plant Using Carbon Dioxide from a Geothermal Plant to Increase Renewable Energy Penetration. Energy Conversion and Management, 226. https://doi.org/10.1016/j.enconman.2020.113494
  5. Baxter, J., Bian, Z., Chen, G., Danielson, D., Dresselhaus, M. S., Fedorov, A. G., Fisher, T. S., Jones, C. W., Maginn, E., Kortshagen, U., Manthiram, A., Nozik, A., Rolison, D. R., Sands, T., Shi, L., Sholl, D., & Wu, Y. (2009). Nanoscale Design to Enable the Revolution in Renewable Energy. Energy & Environmental Science, 2(6), 559. https://doi.org/10.1039/b821698c
  6. Begovic, M., Pregelj, A., Rohatgi, A., & Honsberg, C. (2001). Green Power: Status and Perspectives
  7. Brown, M. A. (2001). Market Failures and Barriers as a Basis for Clean Energy Policies $. Energy Policy, 29, 1197–1207
  8. Bulkeley, H., Castán Broto, V., & Maassen, A. (2014). Low-carbon Transitions and the Reconfiguration of Urban Infrastructure. Urban Studies, 51(7), 1471–1486. https://doi.org/10.1177/0042098013500089
  9. Darabi, Z., & Ferdowsi, M. (2011). Aggregated Impact of plug-in Hybrid Electric Vehicles on Electricity Demand Profile. IEEE Transactions on Sustainable Energy, 2(4), 501–508. https://doi.org/10.1109/TSTE.2011.2158123
  10. Du, H., Liu, D., Sovacool, B. K., Wang, Y., Ma, S., & Li, R. Y. M. (2018). Who buys New Energy Vehicles in China? Assessing Social-Psychological Predictors of Purchasing Awareness, Intention, and Policy. Transportation Research Part F: Traffic Psychology and Behaviour, 58, 56–69. https://doi.org/10.1016/j.trf.2018.05.008
  11. East-West Center. (2019). Challenges for US-Japan Collaboration on Southeast Asia’s Energy Infrastructure | East-West Center | www.eastwestcenter.org. https://www.eastwestcenter.org/publications/opportunities-and-challenges-us-japan-collaboration-southeast-asia%E2%80%99s-infrastructure
  12. Erol-Kantarci, M., & Mouftah, H. T. (2015). Energy-Efficient Information and Communication Infrastructures in the Smart Grid: A Survey on Interactions and Open Issues. IEEE Communications Surveys and Tutorials, 17(1), 179–197. https://doi.org/10.1109/COMST.2014.2341600
  13. Heinen, S., Hewicker, C., Jenkins, N., McCalley, J., O’Malley, M., Pasini, S., & Simoncini, S. (2017). Unleashing the Flexibility of Gas: Innovating Gas Systems to Meet the Electricity System’s Flexibility Requirements. IEEE Power and Energy Magazine, 15(1), 16–24. https://doi.org/10.1109/MPE.2016.2621838
  14. Hoicka, C. E., Conroy, J., & Berka, A. L. (2021). Reconfiguring Actors and Infrastructure in City Renewable Energy Transitions: a regional perspective. Energy Policy, 158, 112544. https://doi.org/10.1016/J.ENPOL.2021.112544
  15. Hu, H., Xue, W., Jiang, P., & Li, Y. (2022). Bibliometric Analysis for Ocean Renewable Energy: an Comprehensive Review for Hotspots, Frontiers, and Emerging Trends. Renewable and Sustainable Energy Reviews, 167, 112739. https://doi.org/10.1016/j.rser.2022.112739
  16. Hu, X., Zou, C., Zhang, C., & Li, Y. (2017). Technological Developments in Batteries: A Survey of Principal Roles, Types, and Management Needs. IEEE Power and Energy Magazine, 15(5), 20–31. https://doi.org/10.1109/MPE.2017.2708812
  17. IISD. (2017). Sustainable Energy Finance Update: Infrastructure Central to Renewable Energy Deployment and Access | News | SDG Knowledge Hub | IISD. https://sdg.iisd.org/news/sustainable-energy-finance-update-infrastructure-central-to-renewable-energy-deployment-and-access/
  18. International Energy Agency. (2021). Net Zero by 2050 - A Roadmap for the Global Energy Sector. https://iea.blob.core.windows.net/assets/4719e321-6d3d-41a2-bd6b-461ad2f850a8/NetZeroby2050-ARoadmapfortheGlobalEnergySector.pdf
  19. Kammen, D. M., & Sunter, D. A. (2016). City-Integrated Renewable Energy for Urban Sustainability. Science, 352(6288), 922–928. https://doi.org/10.1126/science.aad9302
  20. Kaushal, S. S., & Belt, K. T. (2012). The Urban Watershed Continuum: Evolving Spatial and Temporal Dimensions. Urban Ecosystems, 15(2), 409–435. https://doi.org/10.1007/s11252-012-0226-7
  21. Kementerian Keuangan. (2022, July 26). Bauran Energi Baru Terbarukan Ditargetkan 23 Persen di 2025. Kementerian Keuangan Republik Indonesia. https://www.djkn.kemenkeu.go.id/berita_media/baca/13240/Bauran-Energi-Baru-Terbarukan-Ditargetkan-23-Persen-di-2025.html
  22. Kurtz, J., Peters, M., Muratori, M., & Gearhart, C. (2018). Renewable Hydrogen-Economically Viable: Integration into the U.S. Transportation Sector. IEEE Electrification Magazine, 6(1), 8–18. https://doi.org/10.1109/MELE.2017.2784631
  23. Lalor, G., Mullane, A., & O’Malley, M. (2005). Frequency Control and Wind Turbine Technologies. IEEE Transactions on Power Systems, 20(4), 1905–1913. https://doi.org/10.1109/TPWRS.2005.857393
  24. Li, K., & Lin, B. (2016). Impact of Energy Conservation Policies on the Green Productivity in China’s Manufacturing Sector: Evidence from a Three-Stage DEA Model. Applied Energy, 168, 351–363. https://doi.org/10.1016/j.apenergy.2016.01.104
  25. Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically Based Model of Land Surface Water and Energy Fluxes for General Circulation Models. Journal of Geophysical Research, 99(D7). https://doi.org/10.1029/94jd00483
  26. Liu, Q., Cheng, K., & Zhuang, Y. (2022). Estimation of City Energy Consumption in China Based on Downscaling Energy Balance Tables. Energy, 256, 124658. https://doi.org/10.1016/J.ENERGY.2022.124658
  27. Loeb, S. K., Alvarez, P. J. J., Brame, J. A., Cates, E. L., Choi, W., Crittenden, J., Dionysiou, D. D., Li, Q., Li-Puma, G., Quan, X., Sedlak, D. L., David Waite, T., Westerhoff, P., & Kim, J. H. (2019). The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset? Environmental Science and Technology, 53(6), 2937–2947. https://doi.org/10.1021/acs.est.8b05041
  28. Maithel, S. (2008). Energy Efficiency and Renewable Energy: Summary of Presentations and Discussions. Sage Journals, 44(1), 53–55. https://doi.org/10.1177/000944550704400107/ASSET/000944550704400107.FP.PNG_V03
  29. Markard, J. (2018). The Next Phase of the Energy Transition and Its Implications for Research and Policy. Nature Energy, 3(8), 628–633. https://doi.org/10.1038/s41560-018-0171-7
  30. Ogden, J. M. (2003). Prospects for Building a Hydrogen Energy Infrastructure. Annual Review of Energy and the Environment, 24, 227–279. https://doi.org/10.1146/ANNUREV.ENERGY.24.1.227
  31. Pandit, R., & Laband, D. N. (2010). A Hedonic Analysis of the Impact of Tree Shade on Summertime Residential Energy Consumption. In Arboriculture & Urban Forestry (Vol. 36, Issue 3)
  32. Rigter, J., Saygin, D., & Kieffer, G. (2016). Renewable Energy in Cities. https://www.irena.org/publications/2016/Oct/Renewable-Energy-in-Cities
  33. Romero-Lankao, P., & Dodman, D. (2011). Cities in Transition: Transforming Urban Centers from Hotbeds of GHG Emissions and Vulnerability to Seedbeds of Sustainability and Resilience. Introduction and Editorial overview. In Current Opinion in Environmental Sustainability (Vol. 3, Issue 3, pp. 113–120). https://doi.org/10.1016/j.cosust.2011.02.002
  34. Saber, A. Y., & Venayagamoorthy, G. K. (2011). Plug-in Vehicles and Renewable Energy Sources for Cost and Emission Reductions. IEEE Transactions on Industrial Electronics, 58(4), 1229–1238. https://doi.org/10.1109/TIE.2010.2047828
  35. Salak, B., Kienast, F., Olschewski, R., Spielhofer, R., Wissen Hayek, U., Grêt-Regamey, A., & Hunziker, M. (2022). Impact on the Perceived Landscape Quality through Renewable Energy Infrastructure. A Discrete Choice Experiment in the Context of the Swiss Energy Transition. Renewable Energy, 193, 299–308. https://doi.org/10.1016/J.RENENE.2022.04.154
  36. Sovacool, B. K. (2016). Differing Cultures of Energy Security: an International Comparison of Public Perceptions. In Renewable and Sustainable Energy Reviews (Vol. 55, pp. 811–822). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.10.144
  37. Sudarmawan. (2015). Sumber Informasi dan Pengumpulan Data. Semantic Scholar
  38. Turner, J. A. (1999). A Realizable Renewable Energy Future. Science, 285(5428), 687–689. https://doi.org/10.1126/SCIENCE.285.5428.687
  39. UNITED NATIONS. (2020). World Economic Situation and Prospects. United Nations. https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2020_FullReport.pdf
  40. United Nations Conference on Trade and Development. (2021). World Investment Report Investing In Sustainable Recovery. United Nations. https://unctad.org/system/files/official-document/wir2021_en.pdf
  41. Williams, E., Carvalho, R., Hittinger, E., & Ronnenberg, M. (2020). Empirical Development of Parsimonious Model for International Diffusion of Residential Solar. Renewable Energy, 150, 570–577. https://doi.org/10.1016/j.renene.2019.12.101
  42. Won, J., & Jung, M. C. (2023). Does Compact Development Mitigate Urban Thermal Environments? Influences of Smart Growth Principles on Land Surface Temperatures in Los Angeles and Portland. Sustainable Cities and Society, 90, 104385. https://doi.org/10.1016/J.SCS.2022.104385
  43. World Bank. (2022, October 6). Urban Development Overview. https://www.worldbank.org/en/topic/urbandevelopment/overview#1
  44. Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys and Tutorials, 15(1), 5–20. https://doi.org/10.1109/SURV.2012.021312.00034
  45. Yana, S., Nizar, M., & Yulisma, A. (2021). Prospek Utama Pengembangan Energi Terbarukan di Negara-Negara ASEAN. Serambi Engineering, VI(2). http://www.erranet.org/OtherActivitie
  46. Yang, G., Zhang, G., Cao, D., Zha, D., & Su, B. (2023). China’s Ambitious Low-Carbon Goals Require Fostering City-Level Renewable Energy Transitions. IScience, 106263. https://doi.org/10.1016/J.ISCI.2023.106263
  47. Zhang, Z., Zhao, Y., Cai, H., & Ajaz, T. (2023). Influence Of Renewable Energy Infrastructure, Chinese Outward FDI, and Technical Efficiency on Ecological Sustainability in Belt and Road Node Economies. Renewable Energy, 205, 608–616. https://doi.org/10.1016/J.RENENE.2023.01.060
  48. Zou, H., Du, H., Brown, M. A., & Mao, G. (2017). Large-Scale PV Power Generation in China: A grid Parity and Techno-Economic Analysis. Energy, 134, 256–268. https://doi.org/10.1016/j.energy.2017.05.192

Last update:

No citation recorded.

Last update: 2024-06-30 14:51:06

No citation recorded.