skip to main content

Pemanfaatan Limbah Pretreatment Dalam Produksi Bioetanol Dari Lignoselulosa Untuk Me-Recovery Fine Chemicals Dengan Proses Pirolisa

*Dieni Mansur  -  Research Centre for Chemistry - Indonesian Institute of Sciences, Indonesia
Sabar Pangihutan Simanungkalit  -  Research Centre for Chemistry - Indonesian Institute of Sciences, Indonesia
Nino Rinaldi  -  Research Centre for Chemistry - Indonesian Institute of Sciences, Indonesia
Received: 3 Mar 2016; Published: 18 Apr 2016.

Citation Format:
Abstract
UTILIZATION OF PRETREATMENT WASTE DURING PRODUCTION OF BIOETHANOL FROM LIGNOCELLULOSIC MATERIALS FOR RECOVERY FINE CHEMICALS BY PYROLYSIS. In production of second generation bioethanol by utilizing lignocelluloses as raw material, black liquor was produced from its pretreatment process. As waste of pretreatment process, the black liquor was rich in lignin. Therefore, the black liquor has potential to be proceeded to produce fine chemicals. In this study, black liquor powder was pyrolyzed at 450-600°C for 15 minutes using a fixed bed type reactor. Pyrolysis process produced four types of products thal called as liquid tar, heavy tar, char and gas. Liquid tar was condensable volatile product in condenser and uncondensable ones was called gas. Heavy tar was heavier volatile product that stick to reactor wall on bed of feed and unable to enter a condenser. Whereas, char was deposited carbon left in the pyrolizer. The liquid tar consisted of several chemical compounds that classified into groups of chemicals based on similar functional groups. In a range of temperatures process, higher yield of liquid tar was produced after treated at 550°C compared to other conditions. The main chemical compounds in the liquid tar were phenol, alcohols and alkyl phenols that mainly predicted derived from decomposition of lignin and represented as the fine chemicals from black liquor powder.  Keywords: bioethanol; black liquor powder; fine chemicals; lignocelluloses; pyrolysis Abstrak Dalam produksi bioetanol generasi kedua dengan memanfaatkan lignocellulosa sebagai bahan baku, akan menghasilkan black liquor pada saat proses pretreatment. Sebagai limbah proses pretreatment, black liquor ini kaya akan lignin. Oleh karena itu, black liquor berpotensi diolah untuk menghasilkan fine chemicals. Pada penelitian ini, bubuk black liquor diproses secara pirolisa pada suhu 450-600°C selama 15 menit menggunakan reaktor jenis fixed bed. Proses pirolisa menghasilkan produk yang dapat digolongkan menjadi empat jenis yaitu liquid tar, heavy tar, char dan gas. Liquid tar merupakan volatile product yang terkondensasi di kondensor dan yang tidak dapat terkondensasi disebut sebagai gas. Heavy tar adalah volatile product yang lebih berat dan terlebih dahulu menempel di dinding reaktor pirolisa di atas bed umpan dan tidak sampai masuk ke kondensor. Sementara char adalah deposit karbon yang tertinggal di dalam reaktor pirolisa. Liquid tar tersusun oleh berbagai macam senyawa kimia yang bisa dikelompokkan menjadi grup-grup berdasarkan kesamaan gugus fungsi. Dari rentang suhu proses tersebut, liquid tar paling banyak dihasilkan pada suhu 550°C. Liquid tar tersebut banyak mengandung fenol, alkohol dan alkil fenol yang diprediksi umumnya berasal dari dekomposisi lignin dan menjadi fine chemicals yang dapat di-recovery dari bubuk black liquor Kata kunci: bioetanol; bubuk black liquor; fine chemicals; lignoselulosa; pirolisa.

Note: This article has supplementary file(s).

Fulltext View|Download |  Suplementary
Surat Pernyataan
Subject
Type Suplementary
  Download (25KB)    Indexing metadata
Keywords: Bioethanol; Black Liquor Powder; Fine chemicals; Lignocelluloses; Pyrolysis
Funding: -

Article Metrics:

  1. Limayem, A., and Ricke, S.C., (2012), Lignocellulosic Biomass for Bioethanol Production: Current Perspectives, Potential Issues and Future Prospects, Progress in Energy and Combustion Science, 38 (4), pp. 449-467
  2. Cotana, F., Cavalaglio G., Gelosia, M., Nicolini, A., Coccia, V., Petrozzi, A., (2014), Production of Bioethanol in a Second Generation Prototype from Pine Wood Chips, Energy Procedia, 45, pp. 42-51
  3. Balat, M., (2011), Production of Bioethanol from Lignocellulosic Materials via The Biochemical Pathway: A Review, Energy Conversion Management, 52 (2), pp. 858-875
  4. Nour, M.H., Smith, E.H., Walther, J.V., (2004), Spectroscopic Evidence of Silica-Lignin Complexes: Implications for Treatment of Non Wood Pulp Wastewater, Water Science and Technology, 50(3), pp. 157-166
  5. Kang, S., Li, X., Fan, J., Chang, J., (2013), Hydrothermal Conversion of Lignin: A Review. Renewable and Sustainable Energy Reviews, 27, pp. 546–558
  6. Singh, R., Prakash, A., Dhiman, S.K., Balagurumurthy, B., Arora, A.K., Puri, S.K., Bhaskar, T., (2014), Hydrothermal Conversion of Lignin to Substituted Phenols and Aromatic Ethers. Bioresource Technology, 165, pp. 319–322
  7. Hyman, D., Sluiter, A., Crocker, D., Johnson, D., Sluiter, J., Black, S., Scarlata, C., (2008), Determination of Acid Soluble Lignin Concentration Curve by UV-Vis Spectroscopy Laboratory Analytical Procedure (LAP), Technical Report No. NREL/TP-510-42617, National Renewable Energy Laboratory, Golden, CO., USA
  8. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., (2008), Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP), Technical Report No. NREL/TP-510-42622, National Renewable Energy Laboratory, Golden, CO., USA
  9. Sluiter, A., Hyman, D., Payne, C., Wolfe, J., (2008), Determination of Insoluble Solids in Pretreated Biomass Material: Laboratory Analytical Procedure (LAP), Technical Report No. NREL/TP-510-42627, National Renewable Energy Laboratory, Golden, CO., USA
  10. Sluiter, A. and Sluiter, J., (2008), Determination of Starch in Solid Biomass Samples by HPLC: Laboratory Analytical Procedure (LAP), Technical Report No. NREL/TP-510-42624, National Renewable Energy Laboratory, Golden, CO., USA
  11. Hank, D., Saidani, N., Namane, A., Hellal, A., (2010), Batch Phenol Biodegradation Study and Application of Factorial Experimental Design, Journal of Engineering Science and Technology Review, 3 (1), pp. 123-127
  12. Ganeshram, V. and Achudhan, M., (2013), Synthesis and Characterization of Phenol Formaldehyde Resin as a Binder used for Coated Abrasives. Indian Journal of Science and Technology, 6 (6s), pp. 4814-4823
  13. Junming, X., Jianchun, J., Wei, L., (2010), Preparation of Novolaks Using Phenolic Rich Components as Partial Substitute of Phenol from Biomass Pyrolysis Oils, Bulletin of the Chemical Society of Ethiopia, 24(2), pp. 251-257
  14. Mourant, D., Riedl, B., Rodrigue, D., Yang, D.-Q., Roy, C., (2007), Phenol Formaldehyde Pyrolytic Oil Resins for Wood Preservation: A Rheological Study. Journal of Applied Polymer Science, 106(2), pp. 1087–1094

Last update:

No citation recorded.

Last update: 2024-11-21 01:34:58

No citation recorded.