CHARACTERISATION OF SOLID AND LIQUID PINEAPPLE WASTE

*Abdullah Abdullah  -  Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, , Indonesia
Hanafi Mat  -  Faculty of Chemical Engineering and Natural Resources Technology, University of Malaysia, , Malaysia
Published: 8 Jun 2008.
Open Access

Citation Format:
Abstract

The pineapple waste is contain high concentration of biodegradable organic material and suspended solid. As a result it has a high BOD and extremes of pH conditions. The pineapple wastes juice contains mainly sucrose, glucose, fructose and other nutrients. The characterisation this waste is needed to reduce it by  recycling to get raw material or  for  conversion into useful product of higher value added products such as organic acid, methane , ethanol, SCP and enzyme. Analysis of sugar indicates that liquid waste contains mainly sucrose, glucose and fructose.  The dominant sugar was fructose, glucose and sucrose.  The fructose and glucose levels were similar to each other, with fructose usually slightly higher than glucose. The total sugar and citric acid content were 73.76 and 2.18 g/l. The sugar content in solid waste is glucose and fructose was 8.24 and 12.17 %, no sucrose on this waste

Keywords: characterization, liquid pineapple waste, solid pineapple waste

Article Metrics:

Last update: 2021-03-03 23:09:09

  1. Valorisation of pineapple wastes for food and therapeutic applications

    Shivali Banerjee, Vijayaraghavan Ranganathan, Antonio Patti, Amit Arora. Trends in Food Science & Technology, 82 , 2018. doi: 10.1016/j.tifs.2018.09.024
  2. Optimization of L(+) Lactic Acid Production from Solid Pineapple Waste (SPW) by Rhizopus oryzae NRRL 395

    Nor Azimah Mohd Zain, Siti Nurbalqis Aziman, Mohd Suardi Suhaimi, Ani Idris. Journal of Polymers and the Environment, 29 (1), 2021. doi: 10.1007/s10924-020-01862-0
  3. An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues

    Lucía Seguí Gil, Pedro Fito Maupoey. Journal of Cleaner Production, 127 , 2018. doi: 10.1016/j.jclepro.2017.10.284
  4. A redox mediated UME biosensor using immobilized Chromobacterium violaceum strain R1 for rapid biochemical oxygen demand measurement

    Beng Hooi Khor, Abd. Khamim Ismail, Rahmalan Ahamad, Shafinaz Shahir. Electrochimica Acta, 127 , 2015. doi: 10.1016/j.electacta.2015.07.089
  5. Isolation and evaluation of xylose-fermenting thermotolerant yeasts for bioethanol production

    Julius E. Nweze, Ifeanyi Ndubuisi, Yoshinori Murata, Hide Omae, James Chukwuma Ogbonna. Biofuels, 2019. doi: 10.1080/17597269.2018.1564480
  6. Butanol production by Clostridium beijerinckii from pineapple waste juice

    Vorapat Sanguanchaipaiwong, Noppol Leksawasdi. Energy Procedia, 127 , 2018. doi: 10.1016/j.egypro.2018.10.006
  7. Food Processing By-Products and their Utilization

    H.K. Sharma, Mandeep Kaur. 2017. doi: 10.1002/9781118432921.ch3
  8. Fluorescent carbon quantum dots from Ananas comosus waste peels: A promising material for NLO behaviour, antibacterial, and antioxidant activities

    Inorganic Chemistry Communications, 124 , 2021. doi: 10.1016/j.inoche.2020.108397
  9. Hydrolytic Performance of Aspergillus niger and Trichoderma reesei Cellulases on Lignocellulosic Industrial Pineapple Waste Intended for Bioethanol Production

    Claudia Conesa, Lucía Seguí, Pedro Fito. Waste and Biomass Valorization, 9 (8), 2018. doi: 10.1007/s12649-017-9887-z
  10. Bio-valorization of Waste

    G. K. Chua, N. I. F. Mahadi, F. H. Y. Tan. Environmental and Microbial Biotechnology, 2021. doi: 10.1007/978-981-15-9696-4_7
  11. Electrochemical oxidation of D-fructose solution using the Box–Behnken design methodology

    Chen Lim Tay, Shuey Lee Fam. Desalination and Water Treatment, 54 (2), 2015. doi: 10.1080/19443994.2014.880380
  12. Valorization of Fruit Processing By-products

    Todor Vasiljevic. 2020. doi: 10.1016/B978-0-12-817106-6.00010-1
  13. A review on electricity generation based on biomass residue in Malaysia

    S.M. Shafie, T.M.I. Mahlia, H.H. Masjuki, A. Ahmad-Yazid. Renewable and Sustainable Energy Reviews, 16 (8), 2012. doi: 10.1016/j.rser.2012.06.031
  14. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification

    Sensors, 16 (2), 2016. doi: 10.3390/s16020188
  15. Handbook of Pineapple Technology

    Eva Dorta, Dalbir S. Sogi. 2016. doi: 10.1002/9781118967355.ch11
  16. Recent advances in anion-doped metal oxides for catalytic applications

    Yu Liu, Wei Wang, Xiaomin Xu, Jean-Pierre Marcel Veder, Zongping Shao. Journal of Materials Chemistry A, 7 (13), 2019. doi: 10.1039/C8TA09913H
  17. Food uses of pineapple waste and by‐products: a review

    Arianna Roda, Milena Lambri. International Journal of Food Science & Technology, 54 (4), 2019. doi: 10.1111/ijfs.14128
  18. Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production

    Claudia Conesa, Lucía Seguí, Nicolás Laguarda-Miró, Pedro Fito. Food and Bioproducts Processing, 100 , 2016. doi: 10.1016/j.fbp.2016.07.001

Last update: 2021-03-03 23:09:15

  1. Optimization of soluble sugar production from pineapple peel by microwave-assisted water pretreatment

    Chongkhong S.. Songklanakarin Journal of Science and Technology, 41 (1), 2019. doi: 10.14456/sjst-psu.2019.29
  2. Valorisation of pineapple wastes for food and therapeutic applications

    Shivali Banerjee, Vijayaraghavan Ranganathan, Antonio Patti, Amit Arora. Trends in Food Science & Technology, 82 , 2018. doi: 10.1016/j.tifs.2018.09.024
  3. Optimization of L(+) Lactic Acid Production from Solid Pineapple Waste (SPW) by Rhizopus oryzae NRRL 395

    Nor Azimah Mohd Zain, Siti Nurbalqis Aziman, Mohd Suardi Suhaimi, Ani Idris. Journal of Polymers and the Environment, 29 (1), 2021. doi: 10.1007/s10924-020-01862-0
  4. An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues

    Lucía Seguí Gil, Pedro Fito Maupoey. Journal of Cleaner Production, 127 , 2018. doi: 10.1016/j.jclepro.2017.10.284
  5. A redox mediated UME biosensor using immobilized Chromobacterium violaceum strain R1 for rapid biochemical oxygen demand measurement

    Beng Hooi Khor, Abd. Khamim Ismail, Rahmalan Ahamad, Shafinaz Shahir. Electrochimica Acta, 127 , 2015. doi: 10.1016/j.electacta.2015.07.089
  6. Isolation and evaluation of xylose-fermenting thermotolerant yeasts for bioethanol production

    Julius E. Nweze, Ifeanyi Ndubuisi, Yoshinori Murata, Hide Omae, James Chukwuma Ogbonna. Biofuels, 2019. doi: 10.1080/17597269.2018.1564480
  7. Microwave-assisted alkali pretreatment for enhancing pineapple waste saccharification

    Conesa C.. BioResources, 11 (3), 2016. doi: 10.15376/biores.11.3.6518-6531
  8. Butanol production by Clostridium beijerinckii from pineapple waste juice

    Vorapat Sanguanchaipaiwong, Noppol Leksawasdi. Energy Procedia, 127 , 2018. doi: 10.1016/j.egypro.2018.10.006
  9. Simple and quick method for recycling pineapple waste into animal feed

    Makinde O.. Livestock Research for Rural Development, 23 (9), 2011.
  10. Ultimate and proximate analysis of Malaysia pineapple biomass from MD2 cultivar for biofuel application

    Mansor A.. Chemical Engineering Transactions, 63 , 2018. doi: 10.3303/CET1863022
  11. Fluorescent carbon quantum dots from Ananas comosus waste peels: A promising material for NLO behaviour, antibacterial, and antioxidant activities

    Inorganic Chemistry Communications, 124 , 2021. doi: 10.1016/j.inoche.2020.108397
  12. Characterization of liquid pineapple waste as carbon source for production of succinic acid

    Jusoh N.. Jurnal Teknologi (Sciences and Engineering), 69 (4), 2014. doi: 10.11113/jt.v69.3165
  13. Hydrolytic Performance of Aspergillus niger and Trichoderma reesei Cellulases on Lignocellulosic Industrial Pineapple Waste Intended for Bioethanol Production

    Claudia Conesa, Lucía Seguí, Pedro Fito. Waste and Biomass Valorization, 9 (8), 2018. doi: 10.1007/s12649-017-9887-z
  14. Effect of feeding total mixed fiber on feed intake and milk production in mid-lactating dairy cows

    Maneerat W.. Kasetsart Journal - Natural Science, 47 (4), 2013.
  15. Electrochemical oxidation of D-fructose solution using the Box–Behnken design methodology

    Chen Lim Tay, Shuey Lee Fam. Desalination and Water Treatment, 54 (2), 2015. doi: 10.1080/19443994.2014.880380
  16. A review on electricity generation based on biomass residue in Malaysia

    S.M. Shafie, T.M.I. Mahlia, H.H. Masjuki, A. Ahmad-Yazid. Renewable and Sustainable Energy Reviews, 16 (8), 2012. doi: 10.1016/j.rser.2012.06.031
  17. An Electrochemical Impedance Spectroscopy System for Monitoring Pineapple Waste Saccharification

    Sensors, 16 (2), 2016. doi: 10.3390/s16020188
  18. Effects of levels of ensiled pineapple waste and Pangola hay fed as roughage sources on feed intake, nutrient digestibility and ruminal fermentation of Southern Thai native cattle

    Suksathit S.. Songklanakarin Journal of Science and Technology, 33 (3), 2011.
  19. Food uses of pineapple waste and by-products: a review

    Roda A.. International Journal of Food Science and Technology, 54 (4), 2019. doi: 10.1111/ijfs.14128
  20. Determination of lactic acid production by rhizopus oryzae in solid state fermentation of pineapple waste

    Aziman S.. Jurnal Teknologi, 77 (31), 2015. doi: 10.11113/jt.v77.6917
  21. Value added processing and utilization of pineapple by-products

    Dorta E.. Handbook of Pineapple Technology: Postharvest Science, Processing and Nutrition, 2016. doi: 10.1002/9781118967355.ch11
  22. Microwaves as a pretreatment for enhancing enzymatic hydrolysis of pineapple industrial waste for bioethanol production

    Claudia Conesa, Lucía Seguí, Nicolás Laguarda-Miró, Pedro Fito. Food and Bioproducts Processing, 100 , 2016. doi: 10.1016/j.fbp.2016.07.001
  23. Vinegar production from pineapple wastes -preliminary saccharification trials

    Roda A.. Chemical Engineering Transactions, 37 , 2014. doi: 10.3303/CET1437102