PENGARUH PERLAKUAN PENDAHULUAN PADA BAGAS SEBAGAI CARRIER UNTUK IMOBILISASI Saccharomyces cerevisiae [Meyen ex E.C. Hansen] TERHADAP PENINGKATAN PRODUKSI BIOETANOL

DOI: https://doi.org/10.14710/reaktor.18.2.%25p
Copyright (c) 2018 REAKTOR
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 04-07-2017
Published: 24-08-2018
Section: Research Article
Tell your colleagues Email the author

Pretreated of sugarcane bagasse was used as a carrier for immobilization of Saccharomyces cerevisiae. Pretreatments were carried out by steaming, pressurized steam, and  combination both of procedure.  The objectives of  this research was to investigate the effect of pretreatment on sugarcane bagasse to cells adsorption and bioethanol production.  Immobilization process was conducted in a ratio of 2.5 g carrier/50 mL cell suspension.  Whole cell biocatalyst as much as 1% (w/v) was used as inoculum for bioethanol fermentation.  The best pretreated sugarcane bagasse for carrier of immobilized cells was obtained using steam treatment for 30 minutes.  Those treatment improved the physical properties of carrier, increased the cell retention up to 10.05 mg/g.  The use of whole cell biocatalyst after steaming pretreatment enhanced ethanol yield 1.5 times higher than control.

Keywords: bioethanol; immobilization; pretreatment; steam treatment; sugarcane bagasse

Keywords

treatment; fermentation; biocatalyst; biomass conversion

  1. Sita Heris Anita 
    Indonesian Institute of Sciences, Indonesia
    Research Center for Biomaterials
  1. Anita, S.H., Mangunwardoyo, W., and Yopi., (2016), Sugarcane bagasse as a carrier for the immobilization of Saccharomyces cerevisiae in bioethanol production, Makara Journal of Technology, 20(2), pp. 73-81.
  2. Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., and Pandey, R.A, (2010), Commercialazing lignocellulosic bioethanol: technology bottlenecks and possibles remedies, Biofuel Bioproduct and Biorefining, 4, pp. 77—93.
  3. Cardona, C.A., Quintero, J.A., and Paz, I.C., (2010), Production bioethanol from sugarcane bagasse: status and perspectives, Bioresources Technology, 101, pp. 4754—4766.
  4. Darby, R.A.J., Cartwright, S.P., Dilworth, M.V., and Bill, R.M., (2012), Which yeast species shall I choose ? Saccharomyces cerevisiae versus Pichia pastoris (review), Methods in Molecular Biology, 866, pp. 11—36.
  5. Dowe, N. and McMillan, J., (2001), Laboratory Analytical Procedure: Lignocellulosic biomass hydrolysis and fermentation, National Renewable Energi Laboratory, Colorado, pp. 1-16.
  6. Escobar, L.M.A., Alvarez, U.S., and Penuela, M., (2012), Yeast immobilization wastes for ethanol production in packed bed bioreactor, Rev. Fac. Ing. Univ. Antioquia, 62, pp. 66—76.
  7. Fitria, Ermawar, R. A., Fajriutami, T., and Hermiati ,E., (2011), Pretreatment of sugar-cane bagasse as bioethanol feedstock, Proceeding the1st International Symposium for Sustainable Humanosphere, 1, pp. 128—132.
  8. Genisheva, Z., Mussatto, S. I., Oliveira, J.M., and Teixeira, J. A., (2011), Evaluating the potential of wine-making residues and corn cobs as support materials for cell immobilization for ethanol production, Industrial Crops and Products, 34, pp. 979—985.
  9. Hasunuma, T. and Kondo, A., (2012). Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains, Process Biochemistry, 47, pp. 1287—1294.
  10. Hermiati, E., Mangunwidjaja, D., Sunarti, T.C., Suparno, O., and Prasetya, B., (2010), Pemanfaatan biomassa lignoselulosa ampas tebu untuk produksi bioetanol, Jurnal Litbang Pertanian, 29(4), pp. 121—130.
  11. Jørgensen, H., Kristensen, J. B., and Felby, C., (2007), Review: enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities, Biofuels Bioprod. Bioref, 1, pp. 119–134.
  12. Kourkoutas, Y., Bekatorov, A.,. Bonat, I. M, Marchant, R., and Koutinas, A.A., (2004), Immobilization technologies and support materials suitable in alcohol bevarages production: a review, Food Microbiology, 21, pp. 377—397.
  13. Kridponpattara, S. and Phisalaphong, M., (2013), Bacterial cellulose-alginate composite sponge as a yeast cell carrier for ethanol production, Biochemical Engineering Journal, 77, pp. 103—109.
  14. Lavoie, J-M., Beauchet, R., Berberi, V., and Chornet, M., (2011), Biorefining lignocellulosic biomass via the feedstock impregnation rapid and sequential steam treatment, Biofuel's Engineering Process Technology, InTech, pp. 685—714.
  15. Mussatto, S.I., Aguilar, C.N., Rodrogues, L.R., and Texeira, J.A., (2009), Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignosellulosic materials, Journal of Molecular Catalysis B: Enzymatic, 59, pp. 76—81.
  16. Mussatto, S., Dragone, G., Guimaraes, P.M.R., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., and Teixeira, J.A., (2010), Technological trends, global market, and challenges of bio-ethanol production, Biotechnology Advances, 28, pp. 817—830.
  17. Nikolic, S., Mojovic, L., Rakin, M., and Pejin, D., (2009), Bioethanol product from corn meal by simultaneous enzymatic saccharification and fermentation with immobilized cells of Saccharomyces cerevisiae var ellipsoideus, Fuel, 88, pp. 1602—1607.
  18. Prior, B.A., Du Preez, J.C., and Rein, P.W., (1992), Environmental parameters in Solid Substrate Cultivation, editor H.W. Doelle, D.A. Mitchell and C.E. Rolz, Elsevier Applied Science, London, pp. 65—85.
  19. Razmovski, R., and Vucurovic, V., (2012), Bioethanol production from sugar beet molasses and thick juice using Saccharomyces cerevisiae immobilized on maize stem ground tissue, Fuel, 92, pp. 1—8.
  20. Santos, D.T., Sarrouh, B.F., Rivaldi, J.D., Converti, A., and Silva, S.S., (2008), Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production, Journal of Food Engineering, 86, pp. 542—548.
  21. Singh, A., Sharma, P., Saran, A.K., Singh, N., and Bishnoi, N.R., (2013), Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices, Renewable Energy, 50, pp. 488—493.
  22. Sluiter, A., Hames B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., and Crocker, D., (2008), Laboratory Analytical Prosedure: Determination of structural carbohydrates and lignin in biomass, National Renewable Energi Laboratory, Colorado, pp. 1-13.
  23. Verbelen, P.J., De Schutter, D.P., Delvaux, F., Verstrepen, K. J., and Delvaux, F.R., (2006), Immobilized yeast cell systems for continuous fermentation applications, Biotechnology Letter, 28, pp. 1515—1525.
  24. Verstrepen, K.J. and Klis, F.M., (2006), Micro review: flocculation, adhesion, and biofilm formation in yeasts, Molecular Microbiology, 60(1), pp. 5—15.
  25. Vucurovic, V., and Razmovski, R., (2012), Sugar beet pulp as support for Saccharomyces cerevisiae immobilization in bioethanol production, Industrial Crops and Products, 39, pp. 128—134.
  26. Wrolstad, R. E., Acree, T. E., Decker, E. A., Penner, M. H., Reid, D. S., Scwartz, S. J., Shoemaker, C. F. , Smith D., and Sporns, P., (2005), Handbook of Food Analytical Chemistry: water, proteins, enzymes, lipids, and carbohydrates, John Wiley & Sons, Hoboken, New Jersey.
  27. Yadav, K.S., Naseeruddin, S., Prasanthi, G.S., Sateesh, L. and Rao, L.V., (2011), Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresource Technology, 102, pp. 6473—6478.
  28. Yi Zheng, Zhongli Pan and Ruihong Zhang, (2009), Overview of biomass pretreatment for cellulosic ethanol production, International Journal Agricultur & Biology Engineering, 2(3), pp. 51—68.
  29. Yu, J., Yue, G., Zhang, J., Zhang, X., and Tan, T. (2010), Immobilization of Saccharomyces cerevisiae to modified bagasse for ethanol production, Renewable Energy, 35, pp. 1130—1134.