BibTex Citation Data :
@article{Reaktor1559, author = {Ratnawati Ratnawati}, title = {IMPROVEMENT OF THE REDLICH-KWONG EQUATION OF STATE BY MODIFICATION OF CO-VOLUME PARAMETER}, journal = {Reaktor}, volume = {13}, number = {1}, year = {2010}, keywords = {co-volume, density, equation of state, vapor pressure}, abstract = {Cubic equations of state are widely used in phase-equilibrium calculations because of their simplicity and accuracy. Most equations of states are not accurate enough for predicting density of liquid and dense gas. A modification on the Redlich-Kwong (RK) equation of state is developed. Parameter b is modified by introducing a new parameter,b, which is a function of molecular weight and temperature. The modification gives a significant improvement over the original RK equation for predicting density. For 6538 data points of 27 compounds, the proposed equation gives only 2.8% of average absolute deviation (AAD), while the original RK and the Soave-Redlich-Kwong (SRK) equations give 11.4% and 11.7%, respectively. The proposed modification improves the performance of the RK equation for predicting vapor pressure as well. For 2829 data points of 94 compounds, the proposed modification lowers the AAD of the RK equation from 1460% down to 30.8%. It is comparable to the famous SRK equation, which give 5.8% of AAD. The advantage of the proposed equation is that it uses only critical pressure and temperature as other equations of states do, and molecular weight, which is easily calculated. Another advantage is that the proposed equation simpler than the SRK equation of state.}, issn = {2407-5973}, pages = {58--65} doi = {10.14710/reaktor.13.1.58-65}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/1559} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2025-01-22 11:22:59
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University