Peningkatan Produksi Gula Pereduksi dari Tandan Kosong Kelapa Sawit dengan Praperlakuan Asam Organik pada Reaktor Bertekanan

*Fahriya Puspita Sari  -  Research Center for Biomaterials LIPI, Indonesia
Nissa Nurfajrin Solihat  -  Research Center for Biomaterials LIPI, Indonesia
Sita Heris Anita  -  Research Center for Biomaterials LIPI, Indonesia
Fitria Fitria  -  Research Center for Biomaterials LIPI, Indonesia
Euis Hermiati  -  Research Center for Biomaterials LIPI, Indonesia
Received: 28 Jul 2016; Published: 3 Jan 2017.
Open Access Copyright (c) 2017 REAKTOR


Citation Format:
Article Info
Section: Research Article
Language: IND
Statistics: 1722 2640
Abstract

ENHANCEMENT OF REDUCING SUGAR PRODUCTION FROM OIL PALM EMPTY FRUIT BUNCH BY PRETREATMENT USING ORGANIC ACID IN PRESSURIZED REACTOR. Organic acids are potential to create more environmentally friendly process in the pretreatment of lignocellulosic biomass for bioethanol production. This study was aimed to investigate the influence of organic acid pretreatment in reducing sugar production in a pressurized reactor with various resident times and temperatures on enzymatic hydrolysis of OPEFB. Two different organic acids (maleic acid and oxalic acid) were used in the pretreatment of oil palm empty fruit bunch (OPEFB) using a pressurized reactor. Factorial design using three different temperatures (170, 180, and 190°C) and four resident times (15, 30, 45, and 60 min) were employed, followed by enzymatic hydrolysis. Each condition conducted two repetitions. Analysis was conducted on the reducing sugar that was produced after saccharification by means of the severity factor of each pretreatment condition. Maleic acid showed higher reducing sugar yield with lower severity factor than oxalic acid with the same operating conditions. The highest yield of reducing sugars (80.84%) was obtained using maleic acid at 170 for 60 minutes with severity factor of 1.836.

 

Keywords: bioethanol; organic acid pretreatment; pressurized reactor; severity factor; oil palm empty fruit bunches;

 

 

Abstrak

 

Asam organik berpotensi dalam membantu proses praperlakuan dari biomassa lignoselulosa untuk memproduksi bioetanol yang ramah lingkungan. Penelitian ini bertujuan untuk mengetahui pengaruh asam organik, suhu dan waktu operasi terhadap produksi gula pereduksi dengan reaktor bertekanan pada tandan kosong kelapa sawit. Dua asam organik yang berbeda yaitu asam oksalat dan asam maleat digunakan untuk proses praperlakuan tandan kosong kelapa sawit (TKKS) dengan bantuan reaktor bertekanan. Dalam proses praperlakuan digunakan tiga suhu yang berbeda yaitu suhu 170, 180, dan 190°C dan empat waktu operasi 15, 30, 45, dan 60 min yang dilanjutkan dengan proses hidrolisis enzimatis. Setiap kondisi dilakukan dua kali pengulangan. Analisa yang digunakan adalah analisa uji gula pereduksi dan severity factor pada kondisi tiap praperlakuan. Asam maleat menunjukkan hasil yang lebih baik dengan severity factor yang lebih rendah dibandingkan menggunakan asam oksalat dengan kondisi operasi yang sama. Hasil yang didapatkan menunjukkan bahwa praperlakuan tandan kosong kelapa sawit dengan bantuan reaktor bertekanan memiliki rendemen gula pereduksi optimum sebesar 80,84% dengan menggunakan asam maleat pada suhu 170°C selama 60 menit dengan severity factor sebesar 1,836.

 

Kata kunci: bioetanol; praperlakuan asam organik; reaktor bertekanan; severity factor; tandan kosong kelapa sawit.

Keywords: bioetanol; pra perlakuan asam organik; reaktor bertekanan; severity factor; tandan kosong kelapa sawit

Article Metrics:

  1. Barclay, T., Ginic-Markovic, M., Cooper, P. D., And Petrovsky, N., (2012), The Chemistry And Sources Of Fructose And Their Effect On Its Utility And Health Implications, Journal Of Excipients And Food Chemical. 3 (2), Pp. 67.
  2. Direktorat Jenderal Perkebunan., (2016), Luas Areal, Produksi Dan Produktivitas Perkebunan Di Indonesia, http://www.Pertanian.Go.Id/Indikator/Tabel-3-Prod-Lsareal-Prodvitas-Bun.Pdf, 5 Februari 2016.
  3. Ezeji, T., Qureshi, N., And Blaschek, H. P., (2007), Butanol Production From Agricultural Residues : Impact Of Degradation Products On Clostridium Beijerinckii Growth And Butanol Fermentation, Biotechnology And Bioengineering, 97(6), Pp. 1460–1469.
  4. Hendriks, A. T. W. M., And Zeeman, G., (2009), Pretreatments To Enhance The Digestibility Of Lignocellulosic Biomass, Bioresource Technology, 100, Pp. 10–18.
  5. Hermiati, E., Risanto, L., Anita, S. H., Aristiawan, Y., And Sudiyani, Y., (2014), Sakarifikasi Serat Tandan Kosong Danpelepah Kelapa Sawit Setelah Pretreatment Menggunakan Kultur Campuran Jamur Pelapuk Putih Phanerochaete Chrysosporium Dan Trametes Versicolor, Jurnal Penelitian Hasil Hutan, 32(2), Pp. 111–122.
  6. Jiang, W., Chang, S., Li, H., Oleskowicz-Popiel, P., And Xu, J., (2015), Liquid Hot Water Pretreatment On Different Parts Of Cotton Stalk To Facilitate Ethanol Production. Bioresource Technology, 176, Pp. 175–180.
  7. Kerdsuwan, S., Laohalidanond, K., And Waste, T., (2011), Renewable Energy From Palm Oil Empty Fruit Bunch, Renewable Energy – Trends And Applications, Http://Www.Intechopen.Com.
  8. Lee, J., & Jeffries, T. W., (2011), Efficiencies Of Acid Catalysts In The Hydrolysis Of Lignocellulosic Biomass Over A Range Of Combined Severity Factors, Bioresource Technology, 102(10), Pp. 5884–5890
  9. Lloyd, T. A., & Wyman, C. E., (2005), Combined Sugar Yields For Dilute Sulfuric Acid Pretreatment Of Corn Stover Followed By Enzymatic Hydrolysis Of The Remaining Solids, Bioresource Technology, 96, Pp. 1967–1977.
  10. Masami, G. O. O., Usui, I., & Urano, N, (2008), Ethanol Production From The Water Hyacinth Eichhornia Crassipes By Yeast Isolated From Various Hydrospheres, African Journal Of Microbiology Research, (2), 110–113.
  11. Mcmillan, James D., 1994, Pretreatment Of Lignocellulosic Biomass, Enzymatic Conversion of Biomass for Fuels Production, Chapter 15, pp 292–324.
  12. Miller, Gail Lorenz., 1959, Use Of Dinitrosalicylic Acid Reagent For Determination Of Reducing Sugar, Analytical Chemistry, 31(3), pp. 426-428.
  13. Mohammad, N., Alam, Z., Kabbashi, N. A., And Ahsan, A., (2012), Effective Composting Of Oil Palm Industrial Waste By Filamentous Fungi : A Review, Resources, Conservation & Recycling, 58, Pp. 69–78.
  14. Mosier, N. S., Ladisch, C. M., And Ladisch, M. R., (2002), Characterization Of Acid Catalytic Domains For Cellulose Hydrolysis And Glucose Degradation. Biotechnology And Bioengineering, 79 (6).
  15. Pu, Y., Hu, F., Huang, F., Davison, B. H., And Ragauskas, A. J., (2013), Assessing The Molecular Structure Basis For Biomass Recalcitrance During Dilute Acid And Hydrothermal Pretreatments, Biotechnology For Biofuels, 6 (15), Pp. 1–13.
  16. Qin, L., Liu, Z., Li, B., Dale, B. E., And Yuan, Y., (2012), Bioresource Technology Mass Balance And Transformation Of Corn Stover By Pretreatment With Different Dilute Organic Acids, Bioresource Technology, 112, Pp. 319–326.
  17. Sarkar, N., Ghosh, S. K., Bannerjee, S., And Aikat, K., (2012), Bioethanol Production From Agricultural Wastes : An Overview, Renewable Energy, 37(1), Pp. 19–27.
  18. Satimanont, S., Luengnaruemitchai, A., And Wongkasemjit, S., (2012), Effect Of Temperature And Time On Dilute Acid Pretreatment Of Corn Cobs, International Journal Of Chemical And Biological Engineering, 6, Pp. 333–337.
  19. Shen, F., Hu, J., Zhong, Y., Liu, M. L. Y., And Saddler, J. N, (2012), Ethanol Production From Steam-Pretreated Sweet Sorghum Bagasse With High Substrate Consistency Enzymatic Hydrolysis. Biomass And Bioenergy, Xxx, Pp. 1–8.
  20. Shi, J., Ebrik, M. A., And Wyman, C. E., (2011), Bioresource Technology Sugar Yields From Dilute Sulfuric Acid And Sulfur Dioxide Pretreatments And Subsequent Enzymatic Hydrolysis Of Switchgrass. Bioresource Technology, 102(19), Pp. 8930–8938.
  21. Talebnia, F., Karakashev, D., And Angelidaki, I., (2010), Production Of Bioethanol From Wheat Straw : An Overview On Pretreatment , Hydrolysis And Fermentation. Bioresource Technology, 101(13), Pp. 4744–4753.
  22. Wang, M., Wu, M., And Huo, H., (2007), Life-Cycle Energy And Greenhouse Gas Emission Impacts Of Different Corn Ethanol Plant Types, Environmental Research Letters, 2, 024001.
  23. Warrand, J., And Janssen, H., (2007), Controlled Production Of Oligosaccharides From Amylose By Acid-Hydrolysis Under Microwave Treatment : Comparison With Conventional Heating, Carbohydrate Polymers, 69, Pp. 353–362.
  24. Yusoff, S., (2006), Renewable Energy From Palm Oil - Innovation On Effective Utilization Of Waste, Journal of Cleaner Production, 14, pp. 87-93