BibTex Citation Data :
@article{Reaktor28134, author = {Siti Salamah and Agus Aktawan and Ilham Mufandi}, title = {The Characterization of Synthetic Zeolite for Hydrocracking of Waste Cooking Oil into Fuel}, journal = {Reaktor}, volume = {20}, number = {2}, year = {2020}, keywords = {}, abstract = { Zeolite A was used as hydrocracking catalyst to convert cooking oil into potential renewable fuels. The experiment was performed by characterize the diffraction, and pore properties the synthetic zeolite and it was confirmed the synthetic zeolite was zeolite A. The hydrocracking process of waste cooking oil was carried out in semi-fixed batch reactor system at 450° C for 2 hours, under the hydrogen flow of 20 ml/minute. The diffractogram and Si/Al ratio, 1.6, were matched to zeolite A properties, with the surface area, pore diameter, and pore volume were, 1.163 m2/g, 3.93 nm, and 0.001 cc/g, respectively. Liquid product from hydrocracking process of cooking oil consisted of 28.99% alkane and alkene 26.59% that are potential as renewable fuels. Keywords: waste cooking oil; zeolite A; hydrocracking }, issn = {2407-5973}, pages = {89--95} doi = {10.14710/reaktor.20.2.89-95}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/28134} }
Refworks Citation Data :
Zeolite A was used as hydrocracking catalyst to convert cooking oil into potential renewable fuels. The experiment was performed by characterize the diffraction, and pore properties the synthetic zeolite and it was confirmed the synthetic zeolite was zeolite A. The hydrocracking process of waste cooking oil was carried out in semi-fixed batch reactor system at 450° C for 2 hours, under the hydrogen flow of 20 ml/minute. The diffractogram and Si/Al ratio, 1.6, were matched to zeolite A properties, with the surface area, pore diameter, and pore volume were, 1.163 m2/g, 3.93 nm, and 0.001 cc/g, respectively. Liquid product from hydrocracking process of cooking oil consisted of 28.99% alkane and alkene 26.59% that are potential as renewable fuels.
Keywords: waste cooking oil; zeolite A; hydrocracking
Article Metrics:
Last update:
RETRACTED ARTICLE: Processing and utilization of an eco-friendly oil as heat transfer fluid derived from camelina seeds
Processing and utilization of an eco-friendly oil as heat transfer fluid derived from camelina seeds
Last update: 2025-01-24 21:44:17
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University