BibTex Citation Data :
@article{Reaktor29887, author = {Angky Putranto and Sakinah Abida and Khodijah Adrebi and Arta Harianti}, title = {Lignocellulosic Analysis of Corncob Biomass by Using Non-Thermal Pulsed Electric Field-NaOH Pretreatment}, journal = {Reaktor}, volume = {20}, number = {4}, year = {2020}, keywords = {}, abstract = { In recent years, the second-generation bioethanol and advanced bio-based material production from biomass are focused on the pretreatment process by separating cellulose components from other components such as lignin and hemicellulose. Therefore, a physicochemical pretreatment method is needed by applying a non-thermal pulsed electric field (PEF) and alkali methods to increase the cellulose availabilities with a short process and low energy input. The aim of this study was to analyze the lignocellulose content of corncob biomass by using non-thermal pulsed electric fields (PEF) and NaOH pretreatment. The pretreatment factors used were the electric field strength of PEF and the pretreatment time. Analysis of the structure and elements of the lignocellulose based on the characteristics of the gravimetric method and SEM-EDX for untreated and treated samples. The results showed that pretreatment of corncobs biomass by using PEF optimally at an electric field strength of 9 kV/cm and pretreatment time of 60 seconds that was increasing cellulose of 40.59% when compared with the control and also decreasing the hemicellulose and lignin content of 12.9% and 2.02%, respectively. Under these conditions, the energy per pulse and specific input energy of PEF required 0.0205 J and 8.72 kJ/L, respectively. The microstructure analysis by using SEM-EDX showed significantly visual differences and was an increase in the percentage of C and O atoms between untreated and treated corncob biomass. Furthermore, the corncob biomass treated by using non-thermal PEF and alkali can become effective and efficient for the next process into cellulose-derived products. Keywords : corncob biomass; pulsed electric field; NaOH; pretreatment; cellulose }, issn = {2407-5973}, pages = {183--191} doi = {10.14710/reaktor.20.4.183-191}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/29887} }
Refworks Citation Data :
In recent years, the second-generation bioethanol and advanced bio-based material production from biomass are focused on the pretreatment process by separating cellulose components from other components such as lignin and hemicellulose. Therefore, a physicochemical pretreatment method is needed by applying a non-thermal pulsed electric field (PEF) and alkali methods to increase the cellulose availabilities with a short process and low energy input. The aim of this study was to analyze the lignocellulose content of corncob biomass by using non-thermal pulsed electric fields (PEF) and NaOH pretreatment. The pretreatment factors used were the electric field strength of PEF and the pretreatment time. Analysis of the structure and elements of the lignocellulose based on the characteristics of the gravimetric method and SEM-EDX for untreated and treated samples. The results showed that pretreatment of corncobs biomass by using PEF optimally at an electric field strength of 9 kV/cm and pretreatment time of 60 seconds that was increasing cellulose of 40.59% when compared with the control and also decreasing the hemicellulose and lignin content of 12.9% and 2.02%, respectively. Under these conditions, the energy per pulse and specific input energy of PEF required 0.0205 J and 8.72 kJ/L, respectively. The microstructure analysis by using SEM-EDX showed significantly visual differences and was an increase in the percentage of C and O atoms between untreated and treated corncob biomass. Furthermore, the corncob biomass treated by using non-thermal PEF and alkali can become effective and efficient for the next process into cellulose-derived products.
Keywords: corncob biomass; pulsed electric field; NaOH; pretreatment; cellulose
Note: This article has supplementary file(s).
Article Metrics:
Last update:
Augmentation of cellulose extraction from oil palm empty fruit bunch via rapid and energy-saving deep eutectic solvent-pulsed electric field pretreatment
Bioethanol production by simultaneous saccharification fermentation (SSF) on corncob using local marine yeast isolate
Non-conventional strategies for pretreatment of lignocellulosic biomass for production of value-added products: a sustainable and circular economy approach
Last update: 2025-02-02 00:06:29
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University