*Lestari Lakhsmi Widowati orcid scopus  -  Aquaculture Department. Faculty of Fisheries and Marine Science. Diponegoro University, Indonesia
Tita Elfitasari  -  Departemen Akuakultur, Indonesia
S Budi Prayitno  -  Departemen Akuakultur, Indonesia
Sri Rejeki  -  Departemen Akuakultur, Indonesia
Pujiono W Purnomo  -  Departemen Manajemen Sumberdaya Akuatik, Indonesia
Restiana W Ariyati  -  Departemen Akuakultur, Indonesia
Roel Bosma  -  Wageningen Institute of Animal Science, Wageningen University, Netherlands
Received: 28 Sep 2020; Published: 31 Oct 2020.
Open Access
Citation Format:

The use of seaweed as ecological tools for improving environmental condition has been proved to sustain shrimp production. However, adding too much seaweeds caused oxygen depletion and nutritional competition. The objective of this study was to determine the optimum density of G. verucosa for supporting the growth of monodon shrimp. The research was conducted in Tambakbulusan village, Demak Regency with 20 fiber semi outdoor tanks. The tanks were used for the experiment without seaweed and with four densities of seaweed (50, 100, 150 and 200 g.m-2) using hanging rope and were co-cultivated with 80 individuals of post larva (2.0-2.9 g) monodon shrimp in 800 L brackish-water system. The concentration of TAN, NO3, and NO2 were monitored every week, while dissolved oxygen (DO), pH, temperature, and salinity werechecked daily for 30 days. The highest shrimp survival rate (79.75%) and growth rate (6.6%day-1) were obtained in the 100 g.m-2 of G. verucosa, significantly higher than in other treatments. Furthermore, seaweed density has a decreasing effect of NO3 content (g/L) in RL100 from 0.26 to 0.16. and the lowest concentration of NO2 and NO3 were determined. Conversely, the highest density of seaweed (200 g m-2) gave the lowest survival rate of shrimp (53.67%) due to high NO2 content. DO had various values depending on the density and drop to less than 3.5 ppm in the highest density. In all treatments,  pH, temperature and salinity werein a good range for shrimp culture. Thus, 100 g.m-2 of seaweed was optimal for ensuring the function as nutrient removal in shrimp co-culture.

Keywords: macro algae, ammonia, nitrite, nitrate
Funding: Non-State Budget Research from the Faculty of Fisheries and Marine Sciences, Diponegoro University, NWO-WOTRO in the framework of the Project to design Aquaculture to Support Mangrove Restoration in I

Article Metrics:

  1. Benard, M.F., Middlemis Maher, J., 2011. Consequences of intraspecific niche variation: phenotypic similarity increases competition among recently metamorphosed frogs. Oecologia 166, 585–592.
  2. Bhatt, N.C., Panwar, A., Bisht, T.S., Tamta, S., 2014. Coupling of Algal Biofuel Production with Wastewater. Sci. World J. 2014, 1–10.
  3. Busacker GP, Adelman TR, Goolish EM. 1990. Growth. In Schreck CB, Moyle PB (eds) Method for fish biology. American Fisheries Society Bathesda Maryl, Bethesda, pp 363-377
  4. Boulay, R., Galarza, J.A., Chéron, B., Hefetz, A., Lenoir, A., Oudenhove, L. van, Cerdá, X., 2010. Intraspecific competition affects population size and resource allocation in an ant dispersing by colony fission. Ecology 91, 3312–3321.
  5. Carlsson MS, Glud RN, Petersen, JK. 2010. Degradation of mussel (Mytius edulis) fecal pellet released from hanging long-line upon sinking and after settling at the sediment. Can J Fish Aquat Sci 67:1376-1387
  6. Christensen PB, Glud RN, Dalsgaard T, Gillispie P. 2003. Impacts of longline mussel farming on oxygen and nitrogen dynamics and biological communities of coastal sediments. Aquaculture 218:567-588
  7. Cronin, A.L., Fédérici, P., Doums, C., Monnin, T., 2012. The influence of intraspecific competition on resource allocation during dependent colony foundation in a social insect. Oecologia 168, 361–369.
  8. Dahuri, R. 2013. Usaha pertambakan Udang Vannamei Prospektif BPEN. Jakarta. 42 Hlm
  9. Jones AB, Dennison WC, Pretson NP. 2001. Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquac 193: 155-178
  10. Hasan, M.R, Rejeki, S. Wisnu, R. 2015. Pengaruh Bobot Awal Yang Berbeda Terhadap Pertumbuhan Gracilaria sp. Yang Dibudidayakan Dengan Metode Longline Di Perairan Tambak Terabrasi Desa Kaliwlingi Kabupaten Brebes. Journal of Aquaculture Management and Technology. 4(2):92-99 Hlm
  11. Hernández, I., Martínez-Aragón, JF., Tovar, A., Pérez-Lloréns, J.L., Vergara, J.J. 2002. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 2. Ammonium. J. Appl. Phycol. 14:375–384
  12. Kang, D., Kim, K.T., Heo, T.-Y., Kwon, G., Lim, C., Park, J., 2019. Inhibition of Photosynthetic Activity in Wastewater-Borne Microalgal–Bacterial Consortia under Various Light Conditions. Sustainability 11, 2951.
  13. KKP (Kementerian Kelautan dan Perikanan). 2013. Blue Economy, Pembangunan Berkelanjutan untuk Kesejahteraan Masyarakat. Kementerian Kelautan dan Perikanan RI. Jakarta
  14. KKP (Kementerian Kelautan dan Perikanan), 2020. Shrimp Cultivation Business Development Strategy. Presented in the Shrimp Business Great Opportunity Webinar
  15. Largo BD, Diola AG, Marababol MS. 2016. Development on an Integrated Multi-Trophic Aquaculture (IMTA) system for tropical marine species in southern Cebu, Central Philipines. Aquac Rep 3:67-76
  16. Murahman, Hanani N., Soemarno, Muhammad, S., 2010., Model Polikultur Udang Putih (Penaeus merguiensis Fab), Ikan bandeng (Chanos chanos Forskal) dan Rumput Laut (Gracilaria Sp.) Secara Tradisional. Jurnal Pembangunan dan Alam Lestari. Vl 1 No. 1 Tahun 2010
  17. Msuya FE and Neori A. 2002. Ulva reticulata and Gracilaria crassa : macroalgae that can biofilter effluent from tidal fishpons in Tanzania. Western Indian Ocean. J Mar Sci 1(2):117-126
  18. Nelson S, Glenn E, Moore D, Walsh T, Fitzsimmons K. 2001. Use of an edible red seaweed to improve effluent from shrimp farms. Environmental Research Laboratory, Univ. Arizona. Tucson. AZ
  19. Neori A, Chopin T, Troel M, Buschmann AH.. 2014. Integrated Aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquac 231:361-391
  20. Oberholster, P.J., Cheng, P.-H., Genthe, B., Steyn, M., 2019. The environmental feasibility of low-cost algae-based sewage treatment as a climate change adaption measure
  21. in rural areas of SADC countries. J. Appl. Phycol. 31, 355–363.
  22. Pagand, P., Blancheton, J.-P., Lemoalle, J., Casellas, C., 2000. The use of high rate algal ponds for the treatment of marine ef¯uent from a recirculating ®sh rearing system. Aquac. Res. 8
  23. PERMEN Kementerian Perikanan dan Kelautan (KKP) No. 75. 2016. Pedoman Umum Pembesaran Udang Windu (Penaeus monodon) dan Udang Vaname (Litopenaeus vannamei). 43 hlm
  24. Rahmaningsih, S. 2012. Penerapan Teknologi Penggunaan Rumput Laut Sebagai Biofilter Alami Air Tambak untuk Mengurangi Tingkat Serangan Penyakit pada Udang Vannamei (Litopenaeus vannamei). Jurnal Teknolohi Perikanan dan Kelautan 2:11-16
  25. Sakdiah, M. 2009. Pemanfaatan Limbah Nitrogen Udang Vannamei (Litopenaeus vannamei) oleh Rumput Laut (Gracilaria verrucosa) Sistem Budidaya Polikultur. [Tesis]. Sekolah Pasca Sarjana Institut Pertanian Bogor. 212 Hlm
  26. SNI (Standard National Indonesia), 2004. Water and Wastewater - Methodology for calculating permanganate titration. National Standarization Department. Indonesia
  27. SNI (Standard National Indonesia), 2004. Water and Wastewater - Methodology for calculating nitrate (NO3-N) using spektrofotometer UV-visible by cadmium reduction.. National Standarization Department. Indonesia
  28. Srisunot, C and Babel, S. 2015. Uptake, release, and absorption of nutrients into the marine environment by the green mussel (Perna viridis). Mar Pollut Bull 97:285-293
  29. Thakur D.P., Lin, C.K. 2003. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacultural Engineering 27: 159-176. DOI: 0144-8609/02/$
  30. Vaquer-Sunyer R, Duarte CM. 2008. Treshold of hypoxia for marine biodiversity. Proc Nat Acad Sci 105:15452-15457
  31. Watten BJ and Sirbell PL. 2006. Comparative performance of fixed film biological filters: application of reactor theory. Aquacult Eng 34:193-213

Last update: 2021-03-01 18:16:34

No citation recorded.

Last update: 2021-03-01 18:16:35

No citation recorded.