skip to main content

CHARACTERISTIC OF BLUE SWIM CRAB MUSTARD (Portunus Pelagicus) PROTEIN HYDROLYSATE WITH DIFFERENT PAPAIN ENZYME CONCENTRATIONS

Nur Fadilah scopus  -  Departement of Fishery Product Technology, Indonesia
*Eko Nurcahya Dewi  -  Departement of Fishery Product Technology, Indonesia
Romadhon Romadhon  -  Departement of Fishery Product Technology, Indonesia
Lukita Purnamayati  -  Departement of Fishery Product Technology, Indonesia

Citation Format:
Abstract

Mustard is a waste contain protein produced from the shell stripping process of blue swimming crab. It has a great potential to be processed as protein hydrolysate. Papain enzyme could be a hydrolysis agent due to its specific function and didn’t cause protein damage. The liquid product of the mustard hydrolysate protein requires a drying process to become a powder product. The drying process method is known as foam-mat drying. The research aims to determine the effect of papain enzyme addition on the characteristics of mustard protein hydrolysate from blue swimming crab and the best enzyme concentration. The research method was  used a completely randomized design (CRD) with different enzyme concentration treatments (0%, 5%, 7.5% and 10%). The data obtained were tested using  ANOVA test, in order  to determine differences  between  treatment a  Honestly Significant Difference (HSD) test were applied. The results showed that the addition of different papain enzyme concentrations had a significantly different effect (P<5%) on all test parameters (yield, hydrolysis degree, protein content, moisture content, fat content, ash content, protein digestibility, and amino acid profile). Based on the results of the study, the best mustard hydrolysate protein were the addition of 10% papain enzyme concentration with a yield value of 19.14±0.29%, hydrolysis degrees of 40.19±0.24%, protein content 49.21±0.83% (dw), the moisture content 7.20±0.20%, fat content 1.49±0.29%, ash content 7.22±0.20%, protein digestibility 88.35% and the highest amino acid level was glutamic acid (3.746%).

Fulltext View|Download
Keywords: Papain enzyme; protein hydrolysate; swimming crab mustard

Article Metrics:

  1. Adawyah, R. 2011. Pengolahan dan Pengawetan Ikan. Bumi Aksara. Jakarta
  2. AOAC, 2005. Official Methods of Analysis. Association of Official. Analytical Chemists. Benjamin Franklin Station, Washington
  3. Aledo, J. C., & Jimenez-Riveres, S. (2010). The effect of temperature on the enzyme-catalyzed reaction: insights from thermodynamics. Journal of Chemical Education, 87(3), 296–298. https://doi.org/10.1007/BF02658056
  4. Annisa, S., Darmanto, Y. S., & Amalia, U. (2017). The effect of various fish species on fish protein hydrolysate with the addition of papain enzyme. Indonesian Journal of Fisheries Science and Technology, 13(1), 24–30. https://doi.org/10.14710/ijfst.13.1.24-30
  5. Anwar, L. O., & Rosmawati. (2013). Karakteristik hidrolisat protein tambelo (Bactronophorus sp.) yang dihidrolisis menggunakan enzim papain. Biogenesis: Jurnal Ilmiah Biologi, 1(2), 133–140. https://doi.org/10.24252/bio.v1i2.459
  6. Asiah, N., Sembodo, R., & Prasetyaningrum, A. (2012). Aplikasi metode foam-mat drying pada proses pengeringan Spirulina. Jurnal Teknologi Kimia Dan Industri, 1(1), 461–467. http://ejournal-s1.undip.ac.id/index.php/jtki
  7. Baehaki, A., Lestari, S. D., & Romadhoni, A. R. (2015). Protein hydrolysis from catfish prepared by papain enzyme and antioxidant activity of hydrolyzate. Jurnal Pengolahan Hasil Perikanan Indonesia, 18(3), 230–239. https://doi.org/10.17844/jphpi.2015.18.3.230
  8. Briani, A. S., Darmanto, Y. S., & Rianingsih, L. (2014). The effect of papain enzyme concentration and fermentation period to the quality of fish sauce from by catch fish. Jurnal Pengolahan Dan Bioteknologi Hasil Perikanan, 3(3), 121–128
  9. Dewantoro, A. A., Pratama, B. A., & Kurniasih, R. A. (2019). Biogas production from crab picking (Portunus pelagius) wastes. IOP Conference Series: Earth and Environmental Science, 246, 1–6. https://doi.org/10.1088/1755-1315/246/1/012085
  10. Djaafar, T. F., Monika, D. C., Marwati, T., Triwitono, P., & Rahayu, E. S. (2020). Microbiology, chemical, and sensory characteristics of cocoa powder: the effect of Lactobacillus plantarum HL-15 as culture starter and fermentation box variation. Digital Press Life Sciences, 2(8), 1–12. https://doi.org/10.29037/digitalpress.22332
  11. Ellouze, S. C., Benmabrouk, H., Baroudi, O., Ayed, N., & Marrakchi, N. (2014). Mediterranien cuttlefish sepia officinalis squid ink is cytotoxic but does not inhibit Glioblastoma U87 tumor cells proliferation, with high nutritional values of edible viscera. International Journal of Basic and Applied Sciences, 3(2), 146–154. https://doi.org/10.14419/ijbas.v3i2.2387
  12. Hadiwiyoto, S. 2009. Teknologi Pengolahan Hasil Perikanan. Jilid 1. Liberty. Yogyakarta
  13. Haslaniza, H., Maskat, M. Y., Wan Aida, W. M., & Mamot, S. (2014). Process development for the production of protein hydrolysate from cockle (Anadara granosa) meat wash water. Sains Malaysiana, 43(1), 53–63
  14. Kasaai, M. R. (2014). Use of water properties in food technology: A global view. International Journal of Food Properties, 17, 1034–1054. https://doi.org/10.1080/10942912.2011.650339
  15. Kurniawan, Lestari, S., & Hanggita, S. (2012). Hidrolisis protein tinta cumi-cumi (Loligo sp) dengan enzim papain. Fishtech, 1(1), 41–54
  16. Listyarini, S., Asriani, & Santoso, J. (2018). Konsentrat protein ikan lele dumbo (Clarias gariepenus) afkir dalam kerupuk melarat untuk mencapai sustainable development goals. Jurnal Matematika Sains Dan Teknologi, 19(2), 106–113. https://doi.org/10.33830/jmst.v19i2.113.2018
  17. Meussen, B. J., van Zeeland, A. N. T., Bruins, M. E., & Sanders, J. P. M. (2014). A fast and accurate UPLC method for analysis of proteinogenic amino acids. Food Analytical Methods, 7, 1047–1055. https://doi.org/10.1007/s12161-013-9712-7
  18. Ministry of Marine and Fisheries. 2018. Encourage Crab Business Growth with Combination of Catch and Cultivation. https://news.kkp.go.id/index.php/dorong-pertumbuhan-bisnis-rajungan-dengan-kombinasi-hasil-tangkapan-dan-budidaya/. Diakses 22 Juni 2021
  19. Mudaningrat, A., Ramdan, K., Salsabila, M., Aisyah, S., & Umami, M. (2020). Kerupuk lemi Portunus pelagicus sebagai solusi pengelolaan limbah rajungan di wilayah Cirebon. Prosiding Seminar Nasional Pendidikan Biologi, 35–42
  20. Nurhayati, T.-, Salamah, E.-, Cholifah, - -, & Nugraha, R.-. (2014). Optimaization process production hydrolysates of protein barramudi viscera. Jurnal Pengolahan Hasil Perikanan Indonesia, 17(1), 42–52. https://doi.org/10.17844/jphpi.v17i1.8136
  21. Nurhayati, T., Salamah, E., & Hidayat, T. (2007). Karakteristik hidrolisat protein ikan selar (Caranx leptolepis) yang diproses secara enzimatis. Buletin Teknologi Hasil Perikanan, 10(1), 23–34
  22. Nurilmala, M., Nurhayati, T., & Roskananda, R. (2018). Limbah industri filet ikan patin untuk hidrolisat protein. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(2), 287–294
  23. Ovissipour, M., Benjakul, S., Safari, R., & Motamedzadegan, A. (2010). Fish protein hydrolysates production from yellowfin tuna Thunnus albacares head using Alcalase and Protamex. International Aquatic Research, 2, 87–95
  24. Palupi, N. W., Windrati, W. S., & Tamtarini. (2010). The effect of enzymatic hydrolysis on the properties of protein hydrolysate from paddy mushroom. MAKARA of Technology Series, 14(2), 73–76. https://doi.org/10.7454/mst.v14i2.695
  25. Permatasari, J., Sumardianto, & Romadhon. (2017). Pengaruh konsentrasi enzim bromelin pada kualitas hidrolisat protein tinta cumi-cumi (Loligo sp.) kering. Prosiding Seminar Nasional Hasil-Hasil Penelitian Perikanan Dan Kelautan Ke-VI, 344–356
  26. Restiani, R. (2016). Enzymatic hydrolysis of protein from nyamplung (Calophyllum inophyllum) oilseed press cake using bromelain. Biota, 1(3), 103–110. https://doi.org/10.24002/biota.v1i3.1226
  27. Rutherfurd, S. M. (2010). Methodology for determining degree of hydrolysis of proteins in hydrolysates: A review. Journal of AOAC International, 93(5), 1515–1522. https://academic.oup.com/jaoac/article-abstract/93/5/1515/5655787
  28. Salamah, E., Nurhayati, T., & Widadi, I. R. (2012). Production and characterization of protein hydrolysates from african catfish (Clarias gariepinus) using papain. Jurnal Pengolahan Hasil Perikanan Indonesia, 15(1), 9–16. https://doi.org/10.17844/jphpi.v15i1.5328
  29. Sasongko, A. Y., Dewi, E. N., & Amalia, U. (2018). The utilization of blue swimming crab (Portunus pelagicus) waste product, lemi, as a food flavor. IOP Conference Series: Earth and Environmental Science, 102, 1–7. https://doi.org/10.1088/1755-1315/102/1/012030
  30. Simanjorang, E., Kurniawati, Ni., & Hasan, Z. (2012). Pengaruh penggunaan enzim papain dengan konsentrasi yang berbeda terhadap karakteristik kimia kecap tutut. Jurnal Perikanan Dan Kelautan, 3(4), 209–220
  31. Suprayitno, E. dan T.D. Sulistiyawati. 2017. Metabolisme Protein. UB Press. Malang
  32. Syahbuddin, S. A., Riyadi, P. H., & Romadhon. (2014). The effect of adding swimming crab egg (Portunus pelagicus) with different concentrations on the quality of wet noodle. Jurnal Pengolahan Dan Bioteknologi Hasil Perikanan, 3(4), 65–70. http://www.ejournal-s1.undip.ac.id/index.php/jpbhp
  33. Wang, D., & Shahidi, F. (2018). Protein hydrolysate from Turkey meat and optimization of its antioxidant potential by response surface methodology. Poultry Science, 97(5), 1824–1831. https://doi.org/10.3382/ps/pex457
  34. Wijayanti, I., Romadhon, & Rianingsih, L. (2015). Pengaruh konsentrasi enzim papain terhadap kadar proksimat dan nilai rendemen hidrolisat protein ikan bandeng (Chanos chanos Forsskal). PENA Akuatika, 12(1), 13–23
  35. Wijayanti, I., Romadhon, & Rianingsih, L. (2016). Caracteristic of milkfish (Chanos chanos Forsk) protein hydrolysate as effect of different bromelin enzyme concentration. Indonesian Journal of Fisheries Science and Technology, 11(2), 129–133. https://doi.org/10.14710/ijfst.11.2.129-133

Last update:

No citation recorded.

Last update: 2024-03-28 08:15:18

No citation recorded.