skip to main content


Asmanik Asmanik  -  Research Center for Marine and Land Bioindustry, National Research and Innovation Agency, Indonesia
Akhmad Murtadho  -  Fisheries Research Center, National Research and Innovation Agency, Indonesia
Margie Brite  -  Research Center for Marine and Land Bioindustry, National Research and Innovation Agency, Indonesia
*Putut Har Riyadi orcid scopus publons  -  Department of Fish Product Technology, Universitas Diponegoro, Indonesia

Citation Format:
The purpose of the study was to determine the quality of artificial feed after the storage process. There are two types of artificial feed: P1 feed (n-3 HUFA content 2.82% dry weight) and P2 feed (n-3 HUFA content 2.76% dry weight). The formula feed was made of isoprotein (43%), isolipid (16%), and isoenergy (417 kcal/100 g). Parameters observed were physical changes (color, odor, texture, broken pieces, fungal infestation, and overall quality); results of proximate and fatty acid analysis after two months of closed storage in plastic bags at 17 °C. Observation of physical parameters showed that the physical condition of both types of feed was good, but P1 feed is more crumbly than P2 feed. The results of proximate analysis of the P1 feed showed no significant difference during storage. The proximate analysis of P2 feed showed no significant difference in ash content, fat content, energy from fat, and total energy during storage; that experienced significant changes were water, protein, and carbohydrate content. The water and carbohydrate content increased on the 1st and 2nd months, while the protein content decreased in the 1st and 2nd months. The analysis results of fatty acids DHA, EPA, AA, and n-3 HUFA did not show significant change during the storage of the two types of feed. The conclusion was that P1 feed had more stable chemical properties than P2 feed after two months of storage. However, the P1 feed was physically more crumbly than the P2 feed.
Fulltext View|Download
Keywords: Quality; artificial feed; time; storage

Article Metrics:

  1. Adaga, K. (2014). Nutrient profile of some commercial feeds under different storage conditions and their effect on growth performance of Clarias gariepinus. Unpublished MSc. thesis Department of Fisheries and Aquaculture, University of Agriculture Makurdi Nigeria. 125 pp
  2. Asmanik. (2020). Variasi Kandungan n-3 HUFA pada Pakan Buatan untuk Pematangan Gonad Induk Betina Ikan Cobia (Rachycentron canadum). Disertasi. Malang: Universitas Brawijaya
  3. Benetti, D. D., M. R. Orhun., B. Sardenberg., B. O’Hanlon., A. Welch., R. Hoenig., I. Zink., J. A. Rivera., B. Denlinger., D. Bacoat., K. Palmer. and F. Cavalin. (2008). Advances in hatchery and grow-out technology of Cobia Rachycentron canadum (Linnaeus). Aquaculture Research, 39 (7), 701 – 711
  4. Buckle, K. A., R. A. Edwards., G. H. Fleet. dan M. Wootton. (1987). Ilmu Pangan. Universitas Indonesia Press, Jakarta
  5. Chow, K.W. (1980). Storage problems of feedstuffs. In: Fish Feed Technology. FAO/UNDP Training Course, College of Fisheries, Univ. Washington, Seattle, WA, 9 October-15 December 1978. ADCP/REP/BO/ll, pp. 216-224
  6. Coriolano, M. C. and L. S. B. B. Coelho. (2012). Cobia (Rachycentron canadum): a marine fish native to Brazil with biological characteristics to captive environment. Advances in Environmental Research, 29, 119 - 132
  7. Cruz, P. S. (1996). Feed quality problems and management strategies. In: Santiago, C.B., R. M. Coloso., O. M, Millamena, E. G. Borlongan (eds) Feeds for Small-Scale Aquaculture. Proceedings of the National Seminar-Workshop on Fish Nutrition and Feeds; SEAFDEC Aquaculture Department, Iloilo, Philippines, pp 64 -73
  8. De La Cruz, M. C., G. Brazo., and M. N. Bautista. (1989). Effect of storage temperature on the quality of diets for prawn, Penaeus monodon Fabricius. Aquaculture, 80, (1-2), 87 – 95
  9. Estrada, U. R., F. A. Yasumaru., A. G. J. Tacon. and D. Lemos. (2016). Cobia (Rachycentron canadum): a selected annotated bibliography on aquaculture, general biology and fisheries 1967 – 2015. Reviews in Fisheries Science & Aquaculture, 24(1), 1-97
  10. Faulk, C. K. and G. J. Holt. (2008). Biochemical composition and quality of captive-spawned Cobia Rachycentron canadum eggs. Aquaculture, 279 (1-4), 70-76
  11. Fraser, T. W. K. and S. J. Davies. (2009). Nutritional requirements of Cobia, Rachycentron canadum (Linnaeus): a review. Aquaculture Research, 40 (11), 1219 – 1234
  12. Gopakumar, G., A. K. A. Nazar., G. Tamilmani., M. Sakthivel., C. Kalidas., N. Ramamoorthy., S. Palanichamy., V. A. Maharshi., K. S. Rao. and G. S. Rao. (2011). Broodstock development and controlled breeding of Cobia Rachycentron canadum (Linnaeus 1766) from Indian Seas. Indian. J. Fish., 58(4), 27-32
  13. Hossain, M. S., R. C. Kabiraj., M. A. Hasan., M. R. U. B. Shaheen. and M. A. K. Al-Azad. (2011). Effect of biotic and abiotic factors on quality of black gram seed. Bangladesh Res. Publications J. 5, 103-110
  14. Izquierdo, M. S., H. Fernandez – Palacios., and A. G. J. Tacon. (2001). Effect of broodstock nutrition on reproductive performance of fish. Aquaculture, 197 (1-4), 25 – 42
  15. Kulikov, P.I., (1978). Production of meal, oil and protein-vitamin preparations in the fishing industry. American Publishing Co. PVT. Ltd., Bombay, Calcutta, New York, NY, 253 pp
  16. Lee, P., L. Dutney., A. Elizur., S. Poole., A. Forrest., J. Moloney. and M. Mitris. (2015). The development of an Australian Cobia aquaculture industry. The Seafood CRC Company Ltd, The Fisheries Research and Development Corporation and Department of Agriculture and Fisheries. 55 p
  17. Lee, J. S., S. Sokhansanj., A. K. Lau., C. J. Lim., X. T. Bi., V. Basset., F. Yazdanpanah. and
  18. S. O. Staffan. (2015). The effects of storage on the net calorific value of wood pellets. Canadian Biosystems Engineering, (57), 8.5 – 8.11
  19. Liao, C. I., T. Huang., W. Tsai., C. Hsueh., S. Chang. and L. M. Eduardo. (2004). Cobia culture in Taiwan: current status and problem. Aquaculture, 237 (1-4), 155-165
  20. Nhu, V. C., H. Q. Nguyen., T. L. Le., M. T. Tran., P. Sorgeloos., K. Dierckens., H. Reinertsen., E. KjØrsvik. and N. Svennevig. (2011). Cobia Rachycentron canadum aquaculture in Vietnam: recent developments and prospects. Aquaculture, 315 (1-2), 20 – 25
  21. Nguyen, H. Q., T. M. Tran., H. Reinertsen. and E. KjØrsvik. (2010). Effects of dietary essential fatty acid levels on broodstock spawning performance and egg fatty acid composition of Cobia, Rachycentron canadum. Journal of The World Aquaculture Society, 41 (5), 687- 699
  22. Nguyen, H. Q., H. Reinertsen., T. Rustad., T. M. Train. and E. KjØrsvik. 2012. Evaluation of egg quality in broodstock Cobia Rachycentron canadum L. Aquaculture Research, 43 (3), 371 – 385
  23. Rumsey, G.L. 1980. Stability of micro-ingredients in fish feeds. In: Fish Feed Technology. FAO/UNDP Training Course, College of Fisheries, Univ. Washington, Seattle, WA, 9 October-15 December 1978. ADCP/REP/80/11, pp. 226-229
  24. Shaffer, R. V. and E. L. Nakamura. (1989). Synopsis of Biological Data on the Cobia, Rachycentron canadum, (Pisces: Rachycentridae). U. S. Department of Commerce. 30 p
  25. Shyong, W. J., C. H. Haung. and H. C. Chen. (1998). Effects of dietary protein concentration on growth and muscle composition of juvenile. Aquaculture, 167 (1-2), 35-42
  26. Stuart, V.E., J. H. Head. and K. H. Mann. (1985). Seasonal changes in the digestive enzyme levels of the amphipod Corophium volutator (Pallas) in relation to diet. J. Exp. Mar. Biol. Ecol., 88 (33), 243-256
  27. Sun, W. Q. and A. C . Leopold. (1997). Glassy state and seed storage stability: a viability equation analysis. Annals of Botany, 74 (6), 601-604
  28. Solomon, S. G., L. O. Tiamiyu., V. T. Okomoda. and K. Adaga. (2016). Effects of storage conditions on quality characteristics of commercial aquafeeds and growth of African catfish Clarias gariepinus. Croatian Journal of Fisheries, 74 (1), 30-37

Last update:

No citation recorded.

Last update: 2024-04-21 21:45:16

No citation recorded.