skip to main content

PENDUGAAN POTENTIAL FISHING GROUND IKAN MADIDIHANG DI PERAIRAN SELATAN SIKKA MENGGUNAKAN MODEL GAM BERBASIS DATA PENGINDERAAN JAUH

*Sukardi Sukardi scopus  -  universitas nusa nipa, Indonesia
Christofel Oktavianus Nobel Pale  -  Universitas Nusa Nipa, Indonesia

Citation Format:
Abstract

Ikan madidihang (Thunnus albacares) merupakan komoditas penting dalam sektor perikanan tangkap di Indonesia, terutama di Nusa Tenggara Timur, yang memiliki nilai ekonomi dan sosial yang tinggi. Kelimpahan ikan ini dipengaruhi oleh kondisi lingkungan laut, seperti suhu permukaan laut (SPL) dan konsentrasi klorofil-a (CHL). Kondisi oseanografi ini berhubungan langsung dengan produktivitas primer dan distribusi ikan, yang penting untuk pengelolaan sumber daya perikanan secara berkelanjutan. Penelitian ini bertujuan untuk menganalisis hubungan antara parameter oseanografi (SPL dan CHL) dengan kelimpahan ikan madidihang di perairan selatan Kabupaten Sikka, Nusa Tenggara Timur. Penelitian dilakukan pada April–Juli 2025, dengan menggunakan data penginderaan jauh berbasis satelit yang digabungkan dengan data observasi lapangan. Analisis dilakukan dengan Model Generalized Additive Model (GAM) dengan formula GAM ~ s(SPL) + s(CHL) untuk menguji pengaruh non-linear antara variabel oseanografi dan kelimpahan ikan. Hasil menunjukkan bahwa SPL dan CHL berpengaruh signifikan dengan p = 0,01685 (SPL) dan p = 0,00413 (CHL). Nilai edf = 1,000 untuk SPL menunjukkan hubungan hampir linear, sedangkan edf = 1,812 untuk CHL menunjukkan hubungan non-linear. Model ini menghasilkan AIC = 1243,599, R² (adj) = 0,0604, dan Deviance Explained = 7,61%, menunjukkan kecocokan model yang baik. Pemetaan spasial menunjukkan zona potensial penangkapan ikan tertinggi terjadi pada Juni–Juli, dipengaruhi oleh aktivitas upwelling. Kondisi optimal penangkapan ditemukan pada SPL 27,5–28,5°C dan CHL 0,1–0,5 mg/m³.

Fulltext View|Download
Keywords: Madidihang; Potential Fishing Groung; GAM; Penginderaan Jauh; Selatan Sikka

Article Metrics:

  1. Cardinale, M., Colloca, F., Bonanno, A., Scarcella, G., Arneri, E., Jadaud, A., … Herrera, J. G. (2021). The Mediterranean fishery management: A call for shifting the current paradigm from duplication to synergy. Marine Policy, 131. https://doi.org/10.1016/j.marpol.2021.104612
  2. Das, G. K. (2024). Analysing Sea Surface Temperature and Chlorophyll-a Distribution Along Visakhapatnam Coast Using MODIS Data. Knowledge-Based Engineering and Sciences, 5(2), 19–30. https://doi.org/10.51526/ kbes. 2024.5.2.19-30
  3. Fan, C., Chen, M., Wang, X., Wang, J., & Huang, B. (2021, March 29). A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Frontiers in Energy Research. Frontiers Media S.A. https://doi.org/10.3389/fenrg.2021.652801
  4. Halid, I. (2022) Mapping of potential zones for fishing white-spotted spinefoot (Siganus canaliculatus) through photogrammetric and cartometric methods in coral coastal waters, Luwu Regency, South Sulawesi. Available https://doi.org/10.33997/ j.afs.2022.35.1.009
  5. Hsiao, P. Y., Shimada, T., Lan, K. W., Lee, M. A., & Liao, C. H. (2021). Assessing summertime primary production required in changed marine environments in upwelling ecosystems around the taiwan bank. Remote Sensing, 13(4), 1–22. https://doi.org/10.3390/rs13040765
  6. Hsu, T. Y., Chang, Y., Lee, M. A., Wu, R. F., & Hsiao, S. C. (2021). Predicting skipjack tuna fishing grounds in the western and central pacific ocean based on high‐spatial– temporal‐resolution satellite data. Remote Sensing, 13(5), 1–17. https://doi.org/10.3390/rs13050861
  7. Koropitan, A. F., Kholilullah, I., & Yusfiandayani, R. (2021). Modeling mackerel tuna (Euthynnus affinis) habitat in southern coast of java: Influence of seasonal upwelling and negative iod. HAYATI Journal of Biosciences, 28(4), 271–285. https://doi.org/10.4308/HJB.28.4.271-285
  8. Kuo, Y. M., Chen, Y. H., Chiu, Y. T., & Lin, T. F. (2025). Water quality and physicochemical conditions drive chlorophyll-a concentrations in two connected subtropical off-stream reservoirs. Sustainable Environment Research, 35(1). https://doi.org/10.1186/s42834-025-00252-2
  9. Lisna, Febryanti, H. R., Heltria, S., Toni, Y., Ramadan, F., & Ramdhani, F. (2024). Estimation of the fishing ground potential based on oceanography parameters (GIS-based) of yellowfin tuna (Thunnus albacares) in West Sumatra waters. AACL Bioflux, 17(6), 3175–3189
  10. Muawanah, U., Arthatiani, F. Y., Soedjarwo, P. A., Kurniasari, N., Sari, Y. D., Zulham, A., … Hikmah, H. (2021). Small scale tuna fisheries profiles in the Indonesia archipelagic waters. In IOP Conference Series: Earth and Environmental Science (Vol. 869). IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/869/1/012017
  11. Muhammad, M., Priana, A. W., Affan, J. M., Haridhi, H. A., Irwan, I., Yuni, S. M., & Setiawan, I. (2022). Mapping potential fishing zones based on sea surface temperature and Chlorophyll-A in the Waters of Aceh Besar, Indonesia. In E3S Web of Conferences (Vol. 339). EDP Sciences. https://doi.org/10.1051/e3sconf/202233902002
  12. Leonard, J. N., & Skov, P. V. (2022). Capacity for thermal adaptation in Nile tilapia (Oreochromis niloticus): Effects on oxygen uptake and ventilation. Journal of Thermal Biology, 105. https://doi.org/10.1016/j.jtherbio.2022.103206
  13. Nimit, K., Masuluri, N. K., Berger, A. M., Bright, R. P., Prakash, S., TVS, U., … Varghese, S. P. (2020). Oceanographic preferences of yellowfin tuna (Thunnus albacares) in warm stratified oceans: A remote sensing approach. International Journal of Remote Sensing, 41(15), 5785–5805. https://doi.org/10.1080/01431161.2019.1707903
  14. Simanjuntak, F., & Lin, T. H. (2022). Monsoon Effects on Chlorophyll-a, Sea Surface Temperature, and Ekman Dynamics Variability along the Southern Coast of Lesser Sunda Islands and Its Relation to ENSO and IOD Based on Satellite Observations. Remote Sensing, 14(7). https://doi.org/10.3390/rs14071682
  15. Safruddin. (2022). The Characteristics of Fishing Ground Using Purse Seine in Makassar Strait and Flores Sea. Torani Journal of Fisheries and Marine Science, 68–76. https://doi.org/10.35911/torani.v5i2.22412
  16. Painter, S. C., Sekadende, B., Michael, A., Noyon, M., Shayo, S., Godfrey, B., … Kyewalyanga, M. (2021). Evidence of localised upwelling in Pemba Channel (Tanzania) during the southeast monsoon. Ocean and Coastal Management, 200. https://doi.org/10.1016/j.ocecoaman.2020.105462
  17. Pahlevan, N., Smith, B., Schalles, J., Binding, C., Cao, Z., Ma, R., Stumpf, R. (2020). Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sensing of Environment, 240. https://doi.org/10.1016/ j.rse.2019.111604
  18. Petrick, B., Martínez-García, A., Auer, G., Reuning, L., Auderset, A., Deik, H., … Haug, G. H. (2019). Glacial Indonesian Throughflow weakening across the Mid-Pleistocene Climatic Transition. Scientific Reports, 9(1). https://doi.org/ 10.1038/s41598-019-53382-0
  19. Syah, A. F., Yanti Siregar, E. S., Siregar, V. P., & Agus, S. B. (2020). Application of remotely sensed data and maximum entropy model in detecting potential fishing zones of Yellowfin tuna (Thunnus albacares) in the eastern Indian Ocean off Sumatera. In Journal of Physics: Conference Series (Vol. 1569). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1569/4/042097
  20. Asuhadi, S., Zainuddin, M., Safruddin, S., & Musbir, M. (2025). Spatial Modeling of Yellowfin Tuna in the Banda Sea Based on Oceanographic Factors Using MaxEnt. Journal of the Indonesian Tropical Animal Agriculture, 30(1), 103–114. https://doi.org/10.14710/ik.ijms.30.1.103-114
  21. Purwanto, A. D., Wisha, U. J., Suhadha, A. G., Permatasari, D., & Rahmawati, E. (2024). Seasonal potential fishing zone model in the regional fisheries management of Indonesia (WPP-RI) 716 based on remote sensing satellite data. Kuwait Journal of Science, 51(1). https://doi.org/10.1016/j.kjs.2023.10.002
  22. Sasmito, B., Bashit, N., Arinda, B. R., & Sukmono, A. (2022). Application of Generalized Additive Model for Identification of Potential Fishing Zones Using Aqua and Terra MODIS Imagery Data. Journal of Applied Geospatial Information, 6(1),583–591. https://doi.org/10.30871/ jagi. v6i1.3962
  23. Satria, F., Sadiyah, L., Widodo, A. A., & Wudianto. (2019). Lesson learned of EAFM from pole and line fishery based in Sikka Regency, Nusa Tenggara Timur. In IOP Conference Series: Earth and Environmental Science (Vol. 404). Institute of Physics Publishing. https://doi.org/ 10.1088/1755-1315/404/1/012048
  24. Semedi, B., Diza, N. F., Sari, S. H. J., Wiadnya, D. G. R., Lelono, T. D., Setyohadi, D., Lee, M.-A. (2025). Habitat Suitability Modeling Based on Oceanographic Factors for Yellowfin Tuna (Thunnus albacares) Fishing Grounds in the Southern Waters of Java. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 30(2), 163–173. https://doi.org/10.14710/ ik.ijms.30.2.163-173
  25. Syamsuddin, M. L., Subiyanto, S., Bratasena, T., Syamsudin, F., Purba, N. P., Nurul Ihsan, Y., … Nofrita, N. (2024). Satellite-derived prediction on habitat modelling of skipjack tuna (Katsuwonus pelamis) in the Makassar Strait, Indonesia. Geocarto International, 39(1). https://doi.org/ 10.1080/10106049.2024.2408281
  26. Tadjuddah, M., Sambah, A. B., Sadarun, B., & Wianti, N. I. (2025). Seasonal and Spatial Dynamics of Chlorophyll-a Concentrations in Marine Protected FMA 714 in Relation to Yellowfin Tuna (Thunnus albacares) Catches. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 30(2), 311–320. https://doi.org/10.14710/ ik.ijms. 30.2.311-320
  27. Wiryawan, B. (2020) ‘Catch per unit effort dynamic of yellowfin tuna related to sea surface temperature and chlorophyll in Southern Indonesia’, Fishes, 5(3), pp. 1–16. Available at: https://doi.org/10.3390/fishes5030028

Last update:

No citation recorded.

Last update: 2026-02-05 14:22:54

No citation recorded.