BibTex Citation Data :
@article{JSM2962, author = {Sri Rubiyanti and Sutimin Sutimin}, title = {SOLUSI PERIODIK DARI PERSAMAAN KORTEWEG de VRIES (KdV) DENGAN OPERATOR BILINIER HIROTA}, journal = {JURNAL SAINS DAN MATEMATIKA}, volume = {18}, number = {3}, year = {2010}, keywords = {}, abstract = { Abstract. Hirota bilinear operator ( Hirota Method ) is proposed to directly construct periodic wave solutions from Korteweg de Vries (KdV) equation. This solution can be expressed in terms of Jacobi Theta 4 (Θ 4 ) functions, with dispersion relation yielded from degradation of biliear equation. Then, sinusoidal wave, Solitary, and Cnoidal can be reduced from this solution to asses certain of nome (q) . Key words: Hirota Bilinear operator, Korteweg de Vries (KdV) equation, periodic profil gelombang khusus seperti gelombang Cnoidal dan Solitary. Permalink : http://ejournal.undip.ac.id/index.php/sm/article/view/2962 }, pages = {111--117} url = {https://ejournal.undip.ac.id/index.php/sm/article/view/2962} }
Refworks Citation Data :
Abstract. Hirota bilinear operator (Hirota Method) is proposed to directly construct periodic wave solutions from Korteweg de Vries (KdV) equation. This solution can be expressed in terms of Jacobi Theta 4 (Θ4) functions, with dispersion relation yielded from degradation of biliear equation. Then, sinusoidal wave, Solitary, and Cnoidal can be reduced from this solution to asses certain of nome (q).
Key words: Hirota Bilinear operator, Korteweg de Vries (KdV) equation, periodic profil gelombang khusus seperti gelombangCnoidal dan Solitary.
Permalink : http://ejournal.undip.ac.id/index.php/sm/article/view/2962
Last update:
Last update: 2025-01-22 20:06:07