An Analysis of Rolling Damage Ship Motion Caused by the Wave Load on Bulk Carrier Vessels

Analisa Gerakan Rolling Kapal Bocor Akibat Beban Gelombang Laut Pada Kapal Bulk Carrier

*Teguh Putranto orcid scopus  -  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Indonesia
Dedi Budi Purwanto  -  Department of Marine Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Indonesia
Published: 31 Dec 2018.
Open Access Copyright (c) 2019 Teknik

Citation Format:
Abstract
The stability is a key requirement for the ship to sail safely. This article presents an analysis of rolling movements on bulk carrier vessels that have leaked when subjected to wave loads with heading angles of 90⁰ and 270⁰ and maximum wave height. The ship is in full load condition when the simulation and analysis is carried out with a scenario of leakage in the cargo chamber. Because the vessel with compartment leakage has trim and shaky conditions, the results of the rolling motion show differences in each direction the waves come. The 3D diffraction panel method is used to get the rolling motion of the ship as a function of time. The results of the study without sloshing effects showed that the bulk carrier had the risk of sinking if there were leaks in the two cargo chambers.
Keywords: bulk carrier; rolling; panel method; wave; flooding

Article Metrics:

  1. Archimedes (2002). The Works of Archimedes, diedit oleh T. Heath, Mineola: Dover.
  2. Atwood, G. (1798). A Disquisition on the Stability of Ships. By George Atwood, Esq. F.R.S, Philosophical Transactions of the Royal Society of London. Volume 88.
  3. Bouguer, P. (1746). Traite du Navire de sa Construction et de ses Mouvemens, Jombert. Paris.
  4. Euler, L. (1749). Scientia Navalis seu Tractatus de Construendis ac Dirigendis Navibus, Volume 2. St. Petersburg.
  5. Hoste, P. (1697). Theorie de la construction des vaisseaux (Theory of Ship Construction), Arisson & Posule. Lyon.
  6. Jasionowski, A., Vassalos, D., Scott, A. (2011) Ship Vulnerability to Flooding, Safety At Sea Ltd. Universities of Glasgow and Strathclyde.
  7. Jasionowski, A. (2012). Investigation Into The Safety of Ro-Ro Passenger Ships Fitted With Long Lower Holds – Phase II, Research Project 592. Safety At Sea Ltd.
  8. Journee, J.M.J., Adegees. (2010). Theoretical Manual of Strip Theory Program SEAWAY for Windows. Delft: TU Delft.
  9. Lloyd Register Rulefinder. (2007). SOLAS/CONF.3. Adopted on 29 November 1995, Annex – Stability requirement pertaining to the aggreement.
  10. Nowacki, H. (2007). Leonard Euler and The Theory of Ships. Michigan: Department of Naval Architecture and Marine Engineering University of Michigan.
  11. Panunggal, P.E. (2008). Teori Bangunan Kapal I, Surabaya: Jurusan Teknik Perkapalan. Institut Teknologi Sepuluh Nopember.
  12. Putranto, T, Sulisetyono, A. (2015). Analisa Numerik Gerakan dan Kekuatan Kapal Akibat Beban Slamming Pada Kapal Perang Tipe Corvette, KAPAL Jurnal Ilmu Pengetahuan & Teknologi Kelautan, 12(3): 158-164.
  13. Putranto, T., Suastika, K., Gunanta, J. (2017). Intact Stability Analysis of Crew Boat with Variation of Deadrise Angle, IPTEK Journal of Proceeding Series, 2: 124-127.
  14. Putranto, T. and Sulisetyono, A. (2017). Lift-Drag Coefficient and Form Factor Analyses of Hydrofoil due to The Shape and Angle of Attack. International Journal of Applied Engineering Research, 12 (21): 11152-11156.
  15. Rawson, K.J., Tupper. (2008). Basic Ship Theory. Ed.5. Vol.1. Butterworth Heinemann.
  16. Tzeng, C.Y. (2009). On the Design and Analysis of Ship Stabilizing Fin Controller, Journal of Marine Science and Technology, B(2): 177-124..

Last update: 2021-01-17 08:04:10

No citation recorded.

Last update: 2021-01-17 08:04:10

No citation recorded.