Pemodelan Pupuk Rilis Lambat Dengan Fly Ash sebagai Matriks Inert yang Dilapisi oleh Ethylcellulose

*Mohamad Djaeni  -  Departemen Teknik Kimia, Universitas Diponegoro, Indonesia
Kemal Maulana  -  Departemen Teknik Kimia, Universitas Diponegoro, Indonesia
Received: 21 Aug 2019; Revised: 14 Apr 2020; Accepted: 3 May 2020; Published: 31 May 2020.
Open Access
Citation Format:
Article Info
Section: Artikel
Language: ID
Statistics: 59 28
Abstract

Pupuk lambat rilis memiliki peranan yang penting dalam mencegah hilangnya nutrisi tanaman serta meningkatkan efisiensi penyerapan. Penelitian ini bertujuan untuk memperoleh nilai koefisien difusivitas ethylcellulose melalui perbandingan antara laju rilis pellet urea eksperimen dengan laju rilis pellet urea simulasi. Penelitian ini menggunakan metode elemen hingga 2D dengan software Comsol Multiphysics. Melalui perbandingan menggunakan hasil eksperimen dengan simulasi diperoleh hasil difusivitas pada lapisan ethylcellulose bervariasi antara 6 x 10-3 - 9 x 10-3 cm2/hari dengan Root Mean Square Error (RSME) sebagai indikator error perhitungan memiliki nilai antara 0.675 - 1.791. Hasil tersebut menunjukkan bahwa model cukup baik untuk menggambarkan karakteristik difusi urea dari matriks ke air.

Keywords: Fly Ash; Pupuk lambat rilis; Ethylcellulose; Difusivitas; Comsol Multiphysics

Article Metrics:

  1. Al-Zahrani, S. M. (1999) Controlled-release of fertilizers: modelling and simulation. Int. J. Eng. Sci., 37, 1299–307.
  2. Bita, R., Shahram, M. S., & Suraya, A. R. (2015) Enhancement of nitrogen release properties of urea–kaolinite fertilizer with chitosan binder. Chemical Speciation & Bioavailability., 27, 44-51
  3. Cussler E. L. (2009), Diffusion: Mass Transfer in Fluid Systems, Ed.3, Cambridge: Cambridge University Press.
  4. Gambash, S., Kochba, M., & Avnimelech, Y. (1990) Studies on Slow-Release Fertilizers: II. A Method for Evaluation of Nutrient Release Rate From Slow-Releasing Fertilizers. Soil Sci.,150, 446 – 450.
  5. Grewal, B. S. (2017), Higher Engineering Mathematics, 43rd ed., New Delhi: Khanna Publisher.
  6. Kamalakar, D. (2011) Zinc Sulfate Controlled Release Fertilizer with Fly Ash as Inert Matrix. Indian Streams Research Journal, 1(5).
  7. Kent, J. A. (2007) Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology. Verlag: Springer.
  8. Lu, S. M., Chang, S.-L., Ku, W.-Y., Chang, H.-C., Wang, J.-Y. & Lee, D.-J. (2007) Urea release rate from a scoop of coated pure urea beads: Unified extreme analysis. J. Chin. Inst. Chem. Eng., 38, 295–302.
  9. Lu, S. M. & Lee, S. F. (1992) Slow release of urea through latex film. J. Controlled Release, 18, 171–80.
  10. Meena, S.O., Vashishtha, M., and Meena, A. (2019) Modelling and Simulation of Nutrient Release from Neem (Azadirachta Indica) Oil Coated Urea. J. Adv. Agric. Technol., 6, 32–37.
  11. Prasad, R. (2009). Efficient fertilizer use : The key to food security and better environment. Journal of Tropical Agriculture, 47, 1–17.
  12. Shaviv, A., Raban, S., & Zaidel, E. (2003) Modeling Controlled Nutrient Release from Polymer Coated Fertilizers: Diffusion Release from Single Granules. Env. Sci Technol, 37, 2251–6.
  13. Sitanggan, E. P. O. & Purnomo, C. W. (2017) The Effects of Binder on the Release of Nutrient from Matrix-Based Slow Release Fertilizer. Materials Science Forum, 886, 138-144.
  14. Trenkel, M. E. (1997) Controlled-release and stabilized fertilizers in agriculture. Paris: International Fertilizer Industry Association.
  15. Trinh H. T., Shaari K. Z. K., Shuib A. S., and Ismail L. (2013) Modeling of urea release from coated urea for prediction of coating material diffusivity. Proceeding of the 6th International Conference on Process Systems Engieering. Kuala Lumpur, Malaysia (pp 20-30).
  16. Xiang, Y. & Ji-yun, J. (2008) Recent Advances on the Technologies to Increase Fertilizer Use Efficiency. Agriculture Science in China, 7(4), 469–479