skip to main content

Geoelectric Method Application of Dipole-Dipole Configuration for Identification of Landslide Prone Areas in Poka Village, Ambon

Aplikasi Metode Geolistrik Konfigurasi Dipole-Dipole untuk Identifikasi Daerah Rawan Longsor (Studi Kasus di Desa Poka, Ambon)

*Rian Amukti orcid scopus  -  Pusat Penelitian Laut Dalam, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Cahya Damayanti  -  Pusat Penelitian Laut Dalam, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Abdul Kadir Yamko  -  Pusat Penelitian Laut Dalam, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Johanis Dominggus Lekalette  -  Pusat Penelitian Laut Dalam, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Open Access Copyright (c) 2021 TEKNIK

Citation Format:
Abstract
Landslide disaster is one type of disaster that often occurs in Indonesia which causes many casualties and loss of property. Ambon City is an area with high potential for landslides. This is because Ambon City is an area with steep slopes and high rainfall, so a study is needed to overcome this as a disaster mitigation effort. This study aims to determine the area of landslide slip and direction of landslides as a basis for identifying landslide-prone areas using the dipole-dipole configuration geoelectric method. This research was conducted in Poka Village, Ambon City, Maluku Province. Geoelectric measurements using the AGI Ministing tool with data retrieval as much as 5 tracks. Based on the results of the analysis, it was found that the soil layer was dominated by clay and limestone. The reconstruction results show that the topography of the area is a slope with a slope of 45o-80o, and the slip plane has each path with a resistivity contrast of ± 25-60 Ωm at a depth of 5-15 meters, while the direction of the landslide is directed to the southeast.
Fulltext View|Download
Keywords: landslides; geoelectric; dipole-dipole; resistivity; sliding plane

Article Metrics:

Article Info
Section: Artikel
Language : EN
Statistics:
  1. Amukti, R., Isniarno, N. F., & Wijaksana, I. K. (2017). Analisis Daerah Rawan Longsor Dengan Menggunakan Metode Anbalagan Dan Sistem Informasi Geografi Di Desa Margamukti, Kecamatan Pangalengan, Kabupaten Bandung, Jawa Barat. Prosiding Snapp: Sains Dan Teknologi, 329–336. http://proceeding.unisba.ac.id/index.php/sains_teknologi/article/view/1268
  2. Amukti, R., Mildan, D., Dinata, I. A., & Isniarno, N. F. (2017). Identifikasi Kerentanan Longsor Daerah Pangalengan Dengan Metode Slope Morphology. Jpse (Journal Of Physical Science And Engineering), 2(1), 1–6. Https://Doi.Org/10.17977/Um024v2i12017p001
  3. As’ari, Tongkukut, S. H. ., & Tamuntuan, G. H. (2018). Investigasi Bidang Gelincir Tanah Longsor Menggunakan Metode Geolistrik Konfigurasi Dipol-Dipol Sebagai Upaya Mitigasi Bencana Alam Di Kabupaten Minahasa. Jurnal Mipa, 7(2), 33-36. Https://Doi.Org/10.35799/Jm.7.2.2018.21513
  4. Broto, S., & Afifah, R. S. (2008). Pengolahan Data Geolistrik Dengan Metode Schlumberger. Teknik, 29(2), 120–128. Https://Doi.Org/10.14710/Teknik.V29i2.1939
  5. Badan Pembangunan Internasional Amerika Serikat. (2018). Laporan Kajian Kerentanan Dan Risiko Iklim Provinsi Maluku. In /Indonesia Office Of Environment. Maluku
  6. Jayadi, H., Meidji, I. U., & Tang, B. Y. (2019). Identifying Andesite Rocks Sources Using Geoelectrical Resistivity in Loli, Donggala Regency, Central Sulawesi. JPSE (Journal of Physical Science and Engineering). 4(2), 45-44. https://doi.org/10.17977/um024v4i22019p045
  7. Minning, R. C. (1973). Electrical Resistivity Method. In Water Well Journal (Vol. 27, Issue 6). Https://Doi.Org/10.1017/Cbo9781139088435.005
  8. Perrone, A., Lapenna, V., & Piscitelli, S. (2014). Electrical Resistivity Tomography Technique For Landslide Investigation: A Review. Earth-Science Reviews, 135, 65–82. Https://Doi.Org/10.1016/J.Earscirev.2014.04.002
  9. Pratama, R. K., Akmam, & Mahrizal. (2018). Identifikasi Prekursor Tanah Longsor Berdasarkan Perubahan Nilai Tahanan Jenis Batuan Menggunakan Metode Geolistrik Time-Lapse Konfigurasi Dipole-Dipole Di Bukik Lantiak Kecamatan Padang Selatan. Pillar Of Physics, 11(1), 41–48
  10. Rezaei, S., Shooshpasha, I., & Rezaei, H. (2019). Reconstruction Of Landslide Model From Ert, Geotechnical, And Field Data, Nargeschal Landslide, Iran. Bulletin Of Engineering Geology And The Environment, 78(5), 3223–3237. Https://Doi.Org/10.1007/S10064-018-1352-0
  11. S. Tjokrosapoetro, E. R. Dan A. A. (1993). Peta Geologi Lembar Ambon, Maluku (Pp. 2612–1613). Pusat Penelitian Dan Pengembangan Geologi (Pppg)
  12. Sass, O., Bell, R., & Glade, T. (2008). Comparison Of Gpr, 2d-Resistivity And Traditional Techniques For The Subsurface Exploration Of The Öschingen Landslide, Swabian Alb (Germany). Geomorphology, 93(1–2), 89–103. Https://Doi.Org/10.1016/J.Geomorph.2006.12.019
  13. Suntoko, H., & Wicaksono, A. B. (2018). Identifikasi Patahan Pada Batuan Sedimen Menggunakan Metode Geolistrik Konfigurasi Dipole-Dipole Di Tapak Rde Serpong, Banten. Jurnal Pengembangan Energi Nuklir, 19(2), 81. Https://Doi.Org/10.17146/Jpen.2017.19.2.4045
  14. Sutasoma, M., Susilo, A., & Suryo, E. A. (2017). Penyelidikan Zona Longsor Dengan Metode Resistivitas Dan Analisis Stabilitas Lereng Untuk Mitigasi Bencana Tanah Longsor. Indonesian Journal Of Applied Physics, 7(1), 35. Https://Doi.Org/10.13057/Ijap.V7i1.8784
  15. Whittington, H. W., Mccarter, J., & Forde, M. C. (1981). The Conduction Of Electricity Through Concrete. Magazine Of Concrete Research, 33(114), 48–60. Https://Doi.Org/10.1680/Macr.1981.33.114.48

Last update:

No citation recorded.

Last update:

No citation recorded.