skip to main content

Design of Manifold with Pressure Controller for Automatic Exchange of Oxygen Gas Cylinders in Hospital

Desain Manifold dengan Monitoring Tekanan untuk Pertukaran Otomatis Tabung Gas Oksigen Medis di Rumah Sakit

*Atika Hendryani orcid  -  Jurusan Teknik Elektromedik, Politeknik Kesehatan Kementerian Kesehatan Jakarta II,, Indonesia
Vita Nurdinawati  -  Jurusan Teknik Elektromedik, Politeknik Kesehatan Kementerian Kesehatan Jakarta II,, Indonesia
Nashrul Dharma  -  Jurusan Teknik Elektromedik, Politeknik Kesehatan Kementerian Kesehatan Jakarta II,, Indonesia
Open Access Copyright (c) 2021 TEKNIK

Citation Format:
The regulation and supply of oxygen as one of the medical gases in the hospital is important to ensure the availability of these gases for the survival of patients. The regulation of oxygen gas in hospitals usually uses a piping system with manifolds. The manifold will monitor the oxygen gas pressure on each tube. Manifold systems that are widely used in general can only monitor pressure but cannot perform an automatic exchange on gas cylinders if the pressure is under the permissible conditions. The manifold system design developed is equipped with pressure monitoring for automatic exchange of oxygen gas cylinders using pressure sensors and microprocessors.  The test results of the system using regulator and barometer comparisons showed the percentage value of sensor pressure accuracy of 96.92 percent and 97.16 percent. At pressure below the limit of 285 KPa manifold can perform the exchange of active gas cylinders automatically. These results show the manifold design built can work quite well.
Fulltext View|Download
Keywords: medical gas; oxygen; manifold; gas pressure; automatic exchange

Article Metrics:

  1. Das, S., Chattopadhyay, S., Bose, P., Bengal, W., Medical, N. B., Nagar, S., Bengal, W. (2013). The Anaesthesia Gas Supply System. 57(5), 489–499.
  2. Love-Jones, S., Magee, P. (2007). Medical gases, their storage and delivery. Anaesthesia and Intensive Care Medicine, 8(1), 2–6.
  3. Mostert, L., Coetzee, A. R. (2014). Central oxygen pipeline failure. Southern African Journal of Anaesthesia and Analgesia, 20(5), 214–217.
  4. Peng, S. (2017). Design of an IoT-BIM-GIS based Risk Management System for Hospital Basic Operation.
  5. Priyautomo, S., Kholiq, A. (2019). Penggantian Oksigen Otomatis Dilengkapi Sistem Cadangan Pada Simulasi Sentral Oksigen. Prosiding Seminar Nasional Poltekkes Kemenkes Surabaya, 1, 201–207
  6. Rivera, K. R., Pozdin, V. A., Young, A. T., Erb, P. D., Wisniewski, N. A., Magness, S. T., Daniele, M. (2019). Integrated phosphorescence-based photonic biosensor (iPOB) for monitoring oxygen levels in 3D cell culture systems. Biosensors and Bioelectronics, 123, 131–140.
  7. Sarangi, S., Babbar, S., Taneja, D. (2018). Vacuum and Anesthetic Gas Scavenging System. 34(1), 99–102.
  8. Sembodo, B. P., Vidal, N. H. (2019). Design And Development Of Oxygen Monitoring With Galvanic Oxygen Sensor Based On Microcontroller Arduino Uno. 01(1), 5–7
  9. Sun, W., Wang, J., Gai, L., Gu, J., Li, L. (2016). A Hospital Medical Gas Monitoring System Based on Multi-mode Optical Fiber Ring Network. 10005, 8–11
  10. Thorwe, S. U., Wakode, J. S. (2015). Tire Pressure Monitoring System Based on SPI Protocol Using MSP 430. International Journal of Trend in Researc and Development, 2(3), 201–204
  11. Wijaya, N. H., Untara, B., Khoirunnisa, I. (2019). Monitoring Tekanan Gas Medis Pada Instalasi Gas Medis Rumah Sakit. Medika Teknika : Jurnal Teknik Elektromedik Indonesia, 1(1), 2–7.

Last update:

  1. Designing Prototype of Volume Detector for Medical Oxygen Cylinder Using NodeMCU ESP8266

    Mamad Muhamad Mansur, Rahmat Ismatullah Ibrahim, Ade Surya Budiman. bit-Tech, 6 (2), 2023. doi: 10.32877/bt.v6i2.980
  2. Oxygen Availability Control and Monitoring System in Hospitals using IoT

    Nikko Aji Bayu Nugraha, Mashoedah. Journal of Physics: Conference Series, 2111 (1), 2021. doi: 10.1088/1742-6596/2111/1/012016

Last update: 2024-04-12 15:42:25

No citation recorded.