skip to main content

Modifikasi Pati Sukun (Artocarpus Altilis) dengan Teknik Oksidasi Menggunakan Hidrogen Peroksida Tanpa Katalis

*Catarina Sri Budiyati  -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50275, Indonesia
Andri Cahyo Kumoro  -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50275
Ratnawati Ratnawati  -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50275

Citation Format:
Abstract

Salah satu sumber bahan pangan lokal yang belum banyak dimanfaatkan adalah buah sukun (Artocarpus Artilis) yang cukup banyak terdapat di Indonesia. Akan tetapi, pemanfaatan buah sukun terkendala pada kurangnya daya simpan buah segar. Oleh karena itu, perlu dilakukan upaya untuk meningkatkan pemanfaatan buah sukun dengan mengolahnya menjadi produk yang lebih luwes dengan daya simpan yang lebih baik, yaitu menjadi pati sukun. Sifat-sifat pati sukun perlu diperbaiki agar dapat digunakan sebagai pengganti tepung terigu. Tujuan dari penelitian ini adalah untuk memodifikasi pati sukun dengan cara oksidasi menggunakan larutan hidrogen peroksida. Dalam penelitian ini dikaji pengaruh konsistensi luluhan, konsentrasi hidrogen peroksida, waktu, dan suhu terhadap karakteristik fisikokimia pati sukun teroksidasi yang dihasilkan dan ditentukan kondisi optimalnya. Hasil penelitian menunjukkan bahwa semua variable yang dikaji tersebut mempengaruhi reaksi oksidasi pati sukun. Oksidasi pada konsistensi luluhan 20%, konsentrasi hidrogen peroksida 2% dan suhu 50°C mampu menghasilkan nilai swelling power dan water solubility yang terbaik. Reaksi oksidasi tidak mengubah struktur dan morfologi pati sukun termodifikasi secara signifikan.

 

[Title: Modification of Breadfruit (Artocarpus altilis) starch through non-catalytic hydrogen peroxide oxidation] One of local source of food that has not been intensively explored is breadfruit (Artocarpus Artilis). However, the utilization of breadfruit is limited by the poor storage properties of the fresh fruit. Therefore, efforts should be made to improve the utilization of breadfruit to process it into more flexible products with better storability, suach as breadfruit starch. Breadfruit starch properties need to be improved so that it can be used to substitute wheat flour. The aim of this study was to modify the breadfruit starch by oxidation using hydrogen peroxide solution. This work studied examined the influence of consistency of starch slurry, hydrogen peroxide concentration, time, and temperature on the physicochemical properties of the oxidized breadfruit starch. The optimal conditions were also determined. The results showed that all of these variables affected the oxidation of starch breadfruit. The oxidation on starch slurry with consistency 20%, the concentration of hydrogen peroxide of 2%, and temperature of 50°C produced modified starch with best swelling power and water solubility. The oxidation did not significantly change the structure and morphology of the modified starch.

Fulltext View|Download
Keywords: breadfruit; hydrogen peroxide; oxidation; starch
Funding: Department of Chemical Engineering, Diponegoro University

Article Metrics:

  1. Adebowale, K. O., Olu-Owolabi, B. I., Olawumia, E. K. & Lawal, O. S. (2005). Functional Properties of Native, Physically and Chemically Modified Breadfruit (Artocarpus artilis) Starch. Industrial Crops and Products, 21, 343–351
  2. Akanbi, T.O., Nazamid, S., Adebowale, A.A., Farooq, A. & Olaoye, A.O. (2011). Breadfruit Starch-Wheat Flour Noodles: Preparation, Proximate Compositions and Culinary Properties. International Food Research Journal, 18, 1283-1287
  3. Blazek, J. & Copeland, L. (2008). Pasting and Swelling Properties of Wheat Flour and Starch in Relation to Amylose Content. Carbohydrate Polymers, 71, 380–387
  4. Budiyati, C. S. & Ariyanti, D. (2014). Taro Tube Flour Modification via Hydrogen Peroxide Oxidation. International Journal of Science and Engineering, 7(2), 137-142
  5. Chung, S. Y., Han, S. H., Lee, S. W., & Rhee, C. (2010). Physicochemical and Bread-making Properties of Air Flow Pulverized Wheat and Corn Flours. Food Science and Biotechnology, 19(6), 1529-1535
  6. Esuoso, K.O. & Bamiro, F.O. (1995). Studies of the Baking Properties of Non Wheat Flours I. Breadfruit (Artocarpus artilis). International Journal of Food Sciences and Nutrition, 46, 267–273
  7. Gunathilake, K. D. P. P. & Abeyrathne, Y. M . R. K. (2008). Incorporation of Coconut Flour Into Wheat Flour Noodles And Evaluation of Its Rheological, Nutritional And Sensory Characteristics. Journal of Food Processing and Preservation, 32,133–142
  8. Hodge, J. E., & Osman, E. M. (1996). Carbohydrates. In O. R. Fennema (Ed.), Food chemistry (p. 47). New York: Marcel Dekker
  9. Kachkarova-Sorokina, S. L.; Gallezot, P.; Sorokin, A. B., 2004, A Novel clean catalytic method for waste-free modification of polysaccharides by oxidation, Chemical Communications, 2844-2845
  10. Kainuma, K., Odat, T., & Cuzuki, S. (1967). Study of Starch Phosphates Monoesters. Journal of Technology Society Starch, 14, 24 - 28
  11. Kuakpetoon, D. & Wang, Y. J. (2001). Characterization of Different Starches Oxidized by Hypochlorite. Starch/Stärke, 53, 211–218
  12. Kuakptoon, D. & Wang Y. J. (2008). Locations of hypochlorite oxidation in corn starches varying in amylose content. Carbohydrate Research, 343, 90–100
  13. Kumoro, A. C., Retnowati, D. S., and Budiyati, C. S. (2012). Water Solubility, Swelling and Gelatinization Properties of Raw and Ginger Oil Modified Gadung (Dioscorea hispida Dennst) Flour. Research Journal of Applied Sciences Engineering and Technology, 4(17), 2854-2860
  14. Kurakake, M., Akiyama, Y., Hagiwara, H., & Komaki, T. (2009). Effects of Cross-linking and Low Molecular Amylose on Pasting Characteristics of Waxy Corn Starch. Food Chemistry, 116(1), 66–70
  15. Lawal, O. S. (2004). Composition, Physicochemical Properties and Retrogradation Characteristics of Native, Oxidized, Acetylated and Acid-thinned New Cocoyam (Xanthosoma sagittifolium) Starch. Food Chemistry, 87, 205–218
  16. Leach, H. W., Mc Cowen, L. D., & Schoch, T. J. (1959). Structure of the Starch Granules. In: Swelling and Solubility Patterns of Various Starches. Cereal Chemistry, 36, 534 – 544
  17. Loos, P.J., Hood, L. F. & Graham, H. D. (1981). Isolation and Characterization of Starch from Breadfruit. Cereal Chemistry, 58 (4), 282-286
  18. Matsuguma, L. S., Lacerda, L. G., Schnitzler, E., Filho, M .A. D. S. C., Franco, C. M. L. & Demiate, I. M. (2009). Characterization of native and oxidized starches of two varieties of Peruvian carrot (Arracacia xanthorrhiza, B.) from two production areas of Paraná state, Brazil. Brazilian Archives of Biology and Technology, 52 (3), 701-713
  19. Parovuori, P., Hamunen, A., Forssell, P., Autio, K., & Poutanen, K. (1995). Oxidation of Potato Starch by Hydrogen Peroxide. Starch/Stärke, 47 (1),19–23
  20. Rutenberg, M. W., & Solarek, D. (1984). Starch Derivatives: Production and Uses. In: Starch: Chemistry and Technology (R. L. Whistler, J. N. BeMiller, & E. F. Paschall (Eds.), Academic Press, New York
  21. Sandhu, K. S., Kaur, M., Singh, N. & Lim, S. T. (2008). A Comparison of Native and Oxidized Normal and Waxy Corn Starches: Physicochemical, Thermal, Morphological and Pasting Properties. LWT - Food Science and Technology, 41, 1000–1010
  22. Serrero, A., Trombotto, S., Cassagnau, P., Bayon, Y., Gravagna, P., & Montanari, S. (2010). Polysaccharide Gels Based on Chitosan and Modified Starch: Structural Characterization and Linear Viscoelastic Behavior. Biomacromolecules, 11(6), 1534–1543
  23. Silva, R., Ferreira, G., Shirai, M., Haas, Scherer, M., & Franco, C. (2008). Physicochemical Characteristics of Starches Modified with Potassium Permanganate/Lactic Acid and Sodium Hypochlorite/Lactic Acid. Ci¨ência e Tecnologia deAlimentos, 28, 66–77
  24. Smith, R. J. (1967). Characterization and analysis of starches. In Starch: Chemistry and Technology (R. L. Whistler, & U. F. Paschal (Eds.), Academic Press, New York
  25. Takizawa, F.F., da Silva, G.D. O., Fran Konkel, F. E. & Demiate, I. M. (2004). Characterization of Tropical Starches Modified with Potassium Permanganate and Lactic Acid. Brazillian Archives of Biology and Technology, 47(6), 921-931
  26. Tester, R. F., & Morrison, W. R. (1990). Swelling and Gelatinization of Cereal Starches I. Effects of Amylopectin, Amylose and Lipids. Cereal Chemistry, 67, 551–557
  27. Tolvanen, P., Sorokin, A., Mäki-Arvela, P., Murzin, D.Y., & Salmi, T. (2013). Oxidation of Starch by H2O2 in the Presence of Iron Tetrasulfophthalo-cyanine Catalyst: The Effect of Catalyst Concentration, pH, Solid−Liquid Ratio, and Origin of Starch. Industrial & Engineering Chemistry Research, 52, 9351−9358
  28. Tomasik, P. (2004). Chemical Modifications of Polysaccharides, In: Chemical and Functional Properties of Food Saccharides (Tomasik P., Ed.), CRC Press Inc., Boca Raton
  29. Varma, A. J., Kokane, S. P., Pathak, G., & Pradhan, S. D. (1997). Thermal Behavior of galactomannan guar gum and its periodate oxidation products. Carbohydrate Polymers, 32, 111–114
  30. Wang, Y. J. & Wang, L. (2003). Physicochemical properties of common and waxy corn starch oxidized by different level of sodium hypochlorite.Carbohydrate Polymers, 52, 207-217
  31. Zdanowicz, M., Schmidt, B., & Spychaj, T. (2010). Starch Graft Copolymers as Superabsorbents Obtained Via Reactive Extrusion Processing. Polish Journal of Chemical Technology, 12(2), 14–17
  32. Zhang, Y. R., Wang, X. L., Zhao, G. M. & Wang, Y. Z. (2012). Preparation and Properties of Oxidized Starch with High Degree of Oxidation. Carbohydrate Polymers, 87, 2554– 2562

Last update:

No citation recorded.

Last update:

No citation recorded.