skip to main content

Thermal Performance of Non-Collision Type Phase-Change Material Capsule Arrangement in a Tank of Active System Solar Water Heater

Kajian Unjuk Kerja Termal Susunan Kapsul Phase-Change Material Non-Tumbuk di Dalam Tangki Pemanas Air Tenaga Surya Sistem Aktif

*Muhammad Nadjib scopus  -  Program Studi Teknik Mesin Fakultas Teknik, Universitas Muhammadiyah Yogyakarta, Indonesia
Tito Hadji Agung Santosa  -  Program Studi Teknik Mesin Fakultas Teknik, Universitas Muhammadiyah Yogyakarta, Indonesia
Gaguk Marausna  -  Program Studi Teknik Dirgantara, Sekolah Tinggi Teknologi Kedirgantaraan Yogyakarta, Indonesia
Open Access Copyright (c) 2022 TEKNIK

Citation Format:
Abstract
Combination of phase-change material (PCM) and water as a heat storage medium in solar water heating tanks (SWH) has received the attention of researchers because of the high energy density of PCM. The encapsulation method is one way to place PCM in SWH's tank. This study investigates the thermal performance of installing a non-collision type capsule containing PCM in an SWH tank. The research uses an active SWH with a tank capacity of 60 liters. Paraffin wax is put into 24 cylindrical capsules; then, the capsules are installed in the tank, which forms a non-collision arrangement. Twenty pieces of thermocouples are placed both on the waterside and the PCM. The heating process uses a solar simulator for 160 minutes. The temperature data are used to analyze the SWH's thermal performance. The scenario is repeated with the same steps but using the flow spreader at the tank's inlet. The thermal performance results of the two methods are compared. The non-collision arrangement has unsatisfactory thermal performance. Adding a flow spreader increases the cumulative heat storage and collection efficiency by 46.78% and 49.52%, respectively.
Fulltext View|Download
Keywords: capsule; cumulative heat storage; paraffin wax; phase-change material; solar water heater
Funding: Lembaga Penelitian, Publikasi dan Pengabdian Masyarakat Universitas Muhammadiyah Yogyakarta

Article Metrics:

  1. Al-Hinti, I., Al-Ghandoor, A., Maaly, A., Abu Naqeera, I., Al-Khateeb, Z., & Al-Sheikh, O. (2010). Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems. Energy Conversion and Management, 51(8), 1735–1740. https://doi.org/10.1016/j.enconman.2009.08.038
  2. Bazri, S., Badruddin, I. A., Naghavi, M. S., Seng, O. K., & Wongwises, S. (2019). An analytical and comparative study of the charging and discharging processes in a latent heat thermal storage tank for solar water heater system. Solar Energy, 185(June), 424–438. https://doi.org/10.1016/j.solener.2019.04.046
  3. Bouadila, S., Fteïti, M., Mehdi, M., Guizani, A., & Farhat, A. (2012). The Fourth International Renewable Energy Congress Experimental and numerical investigation of a solar water heater with latent storage cavity Enhancement of latent heat storage in a rectangular cavity : Solar water heater case study. December 2018
  4. Chargui, R., & Tashtoush, B. (2021). Thermoeconomic Analysis of Solar Water Heaters Integrating Phase Change Material Modules and Mounted in Football Pitches in Tunisia. Journal of Energy Storage, 33(November 2020). https://doi.org/10.1016/j.est.2020.102129
  5. Dehghan, A. A., & Barzegar, A. (2011). Thermal performance behavior of a domestic hot water solar storage tank during consumption operation. Energy Conversion and Management, 52(1), 468–476. https://doi.org/10.1016/j.enconman.2010.06.075
  6. Esen, M., & Esen, H. (2005). Experimental investigation of a two-phase closed thermosyphon solar water heater. Solar Energy, 79(5), 459–468. https://doi.org/10.1016/j.solener.2005.01.001
  7. Ezan, M. A., Ozdogan, M., & Erek, A. (2011). Experimental study on charging and discharging periods of water in a latent heat storage unit. International Journal of Thermal Sciences, 50(11), 2205–2219. https://doi.org/10.1016/j.ijthermalsci.2011.06.010
  8. Fazilati, M. A., & Alemrajabi, A. A. (2013). Phase change material for enhancing solar water heater, an experimental approach. Energy Conversion and Management, 71, 138–145. https://doi.org/10.1016/j.enconman.2013.03.034
  9. Fukahori, R., Nomura, T., Zhu, C., Sheng, N., Okinaka, N., & Akiyama, T. (2016). Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage. Applied Energy, 170, 324–328. https://doi.org/10.1016/j.apenergy.2016.02.106
  10. Hosseini, M. J., Rahimi, M., & Bahrampoury, R. (2014). Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. International Communications in Heat and Mass Transfer, 50, 128–136. https://doi.org/10.1016/j.icheatmasstransfer.2013.11.008
  11. Ibáñez, M., Cabeza, L. F., Solé, C., Roca, J., & Nogués, M. (2006). Modelization of a water tank including a PCM module. Applied Thermal Engineering, 26(11–12), 1328–1333. https://doi.org/10.1016/j.applthermaleng.2005.10.022
  12. Ibrahim, O., Fardoun, F., Younes, R., & Louahlia-Gualous, H. (2014). Review of water-heating systems: General selection approach based on energy and environmental aspects. Building and Environment, 72, 259–286. https://doi.org/10.1016/j.buildenv.2013.09.006
  13. Islam, M. R., Sumathy, K., & Ullah Khan, S. (2013). Solar water heating systems and their market trends. Renewable and Sustainable Energy Reviews, 17, 1–25. https://doi.org/10.1016/j.rser.2012.09.011
  14. Kalidasan, B., Pandey, A. K., Shahabuddin, S., Samykano, M., Thirugnanasambandam, M., & Saidur, R. (2020). Phase change materials integrated solar thermal energy systems: Global trends and current practices in experimental approaches. Journal of Energy Storage, 27 (November 2019). https://doi.org/10.1016/j.est.2019.101118
  15. Kanimozhi, B., & Bapu, B. R. R. (2012). Experimental study of thermal energy storage in solar system using PCM. Advanced Materials Research, 433–440(July 2015), 1027–1032. https://doi.org/10.4028/www.scientific.net/AMR.433-440.1027
  16. Kee, S. Y., Munusamy, Y., & Ong, K. S. (2018). Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage. Applied Thermal Engineering, 131, 455–471. https://doi.org/10.1016/j.applthermaleng.2017.12.032
  17. Khot, S. A. (2014). Enhancement of thermal storage system using phase change material. Energy Procedia, 54, 142–151. https://doi.org/10.1016/j.egypro.2014.07.257
  18. Kumar, P. M., & Mylsamy, K. (2019). Experimental investigation of solar water heater integrated with a nanocomposite phase change material: Energetic and exergetic approach. Journal of Thermal Analysis and Calorimetry, 136(1), 121–132. https://doi.org/10.1007/s10973-018-7937-9
  19. Nadjib, M. (2016). Penggunaan Paraffin Wax Sebagai Penyimpan Kalor Pada Pemanas Air Tenaga Matahari Thermosyphon. Rotasi, 18(3), 76. https://doi.org/10.14710/rotasi.18.3.76-85
  20. Nadjib, M., Suhanan, & Waluyo, J. (2020). Experimental investigation of thermal behavior in an active type solar water heater based on phase change material using solar simulator. AIP Conference Proceedings, 2296. https://doi.org/10.1063/5.0030475
  21. Nallusamy, N., Sampath, S., & Velraj, R. (2007). Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renewable Energy, 32(7), 1206–1227. https://doi.org/10.1016/j.renene.2006.04.015
  22. Nazir, H., Batool, M., Bolivar Osorio, F. J., Isaza-Ruiz, M., Xu, X., Vignarooban, K., Phelan, P., Inamuddin, & Kannan, A. M. (2019). Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer, 129, 491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126
  23. Nomura, T., Tsubota, M., Oya, T., Okinaka, N., & Akiyama, T. (2013). Heat storage in direct-contact heat exchanger with phase change material. Applied Thermal Engineering, 50(1), 26–34. https://doi.org/10.1016/j.applthermaleng.2012.04.062
  24. Padmaraju, S. A. V., Viginesh, M., & Nallusamy, N. (2008). Comparitive study of sensible and latent heat storage systems integrated with solar water heating unit. Renewable Energy and Power Quality Journal, 1(6), 55–60. https://doi.org/10.24084/repqj06.218
  25. Qin, D., Yu, Z. J., Yang, T., Li, S., & Zhang, G. (2019). Thermal performance evaluation of a new structure hot water tank integrated with phase change materials. Energy Procedia, 158, 5034–5040. https://doi.org/10.1016/j.egypro.2019.01.659
  26. Ramírez, C. C., Jaramillo, F., & Gómez, M. (2020). Systematic review of encapsulation and shape-stabilization of phase change materials. Journal of Energy Storage, 30(52). https://doi.org/10.1016/j.est.2020.101495
  27. Salunkhe, P. B., & Shembekar, P. S. (2012). A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and Sustainable Energy Reviews, 16(8), 5603–5616. https://doi.org/10.1016/j.rser.2012.05.037
  28. Shahsavari, A., & Akbari, M. (2014). Renewable and Sustainable Energy Reviews. ScienceDirect, 41(October), 1277–1287. http://linkinghub.elsevier.com/retrieve/pii/S1364032114007898
  29. Sugiyono, A., Anindhita, I. F., Wahid, L., & Adiarso. (2019). “Outlook Energi Indonesia 2019: Dampak Peningkatan Pemanfaatan Energi Baru Terbarukan Terhadap Perekonomian Nasional.” In Pusat Pengkajian Industri Proses dan Energi
  30. Teamah, H. M., Lightstone, M. F., & Cotton, J. S. (2018). Potential of cascaded phase change materials in enhancing the performance of solar domestic hot water systems. Solar Energy, 159(November 2017), 519–530. https://doi.org/10.1016/j.solener.2017.11.034
  31. Uctug, F. G., & Azapagic, A. (2018). Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions. Science of the Total Environment, 622–623, 1202–1216. https://doi.org/10.1016/j.scitotenv.2017.12.057
  32. Wang, D., Wang, X., Chen, Y., Kang, W., & Liu, Y. (2019). Experimental study on performance test of serpentine flat plate collector with different pipe parameters and a new phase change collector. Energy Procedia, 158, 738–743. https://doi.org/10.1016/j.egypro.2019.01.197
  33. Zhang, T., Lu, G., & Zhai, X. (2021). Design and experimental investigation of a novel thermal energy storage unit with phase change material. Energy Reports, 7(December 2020), 1818–1827. https://doi.org/10.1016/j.egyr.2021.03.029

Last update:

No citation recorded.

Last update: 2024-04-18 05:32:39

No citation recorded.