skip to main content

Properties of Thermal Conductivity Hybrid Epoxy Resin Composite Reinforced Natural Fiber as Alternative Insulator Material

*Ketut Suarsana  -  Program Studi Teknik Mesin, Fakultas Teknik, Universitas Udayana, , Indonesia
DNK Putra Negara  -  Program Studi Teknik Mesin, Fakultas Teknik, Universitas Udayana, , Indonesia
Igpagus Suryawan  -  Program Studi Teknik Mesin, Fakultas Teknik, Universitas Udayana, , Indonesia
Open Access Copyright (c) 2022 TEKNIK

Citation Format:
Abstract
The properties of composite materials are highly dependent on the constituents used as reinforcement such as natural fibers with a matrix. This research was conducted to determine the effect of chemical solution treatment of NaOH and Silane coupling agent on fiber with concentration on thermal conductivity properties. The research involved processing fiber from nettle plant by decortication to obtain a single fiber. The hybrid composite process uses the hand lay-up molding method. The fibers were treated with a chemical solution of NaOH and Silane at concentrations of: 3 and 6% for 2 hours, had a length of 5 mm, and in random orientation. The ratio of the nettle fiber reinforced resin matrix to the weight ratio of natural fibers was 10, 15, 20 and 25%. The results obtained that the highest thermal conductivity properties with a fiber composition of 25% in the chemical solution treatment of 6% Silane of 0.1995 Watt/moK. On the other hand, the lowest with a composition of 10% natural fiber with 3% NaOH treatment of 0.1099 Watt/moK. The low thermal conductivity of hybrid composites can be applied as an insulator
Fulltext View|Download
Keywords: Composite; NaOH; Silane; Thermal conductivity

Article Metrics:

  1. Alex, S., & Retnam, S. . J. (2014). A Review on Degradable Hybrid Natural Fibre. International Journal of Design and Manufacturing Technology (IJDMT), 5(3), 137–141
  2. Bacci, L., Baronti, S., Predieri, S., & di Virgilio, N. (2009). Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Industrial Crops and Products, 29(2–3), 480–484. https://doi.org/10.1016/j.indcrop.2008.09.005
  3. Bodros, E., & Baley, C. (2008). Study of the tensile properties of stinging nettle fibres (Urtica Dioica). Material Letters, 62(14)
  4. Choudhary, O. P., & ka, P. (2017). Scanning Electron Microscope: Advantages and Disadvantages in Imaging Components. International Journal of Current Microbiology and Applied Sciences, 6(5), 1877–1882. https://doi.org/10.20546/ijcmas.2017.605.207
  5. Kushwaha, P. K., & Kumar, R. (2010). Studies on water absorption of bamboo-polyester composites: Effect of silane treatment of mercerized bamboo. Polymer - Plastics Technology and Engineering, 49(1), 45–52. https://doi.org/10.1080/03602550903283026
  6. Nikmatin, S., Syafiuddin, A., Hong Kueh, A. B., & Maddu, A. (2017). Physical, thermal, and mechanical properties of polypropylene composites filled with rattan nanoparticles. Journal of Applied Research and Technology, 15(4), 386–395. https://doi.org/10.1016/j.jart.2017.03.008
  7. Patnaik, A., Abdulla, M., Satapathy, A., & Biswas, S. (2010). A Study on a Possible Correlation Between Thermal Conductivity and Wear Resistance of Particulate Filled Polymer Composites. Materials and Design, 31(2), 837–849
  8. Putra, L. S., Putu, I. G., Suryawan, A., & Suarsana, I. K. (2019). Efek Perlakuan Silane Pada Komposit Berpenguat Serat Jelatang Terhadap Kekuatan Impact. Jurnal Desain Mekanika, 1–5
  9. Rahmayanti, H. D., Munir, R., Sustini, E., & Abdullah, M. (2019). Karakterisasi Sifat Mekanik Benang Wol dan Benang Kasur. Jurnal Fisika, 9(1), 68–77
  10. Sen, S., & Ankit. (2018). An Experimental Study of Concrete Mix by Adding Natural Fiber (Zucchini Fiber/ Luffa Fiber). International Journal of Civil Engineering and Technology, 9(7), 724–732
  11. Shetty, D. (2019). A Literature Review on Processing and Testing of Mechanical Properties of Hybrid Composites Using Graphene/Epoxy with Alumina. International Journal of Mechanical Engineering and Technology (IJMET), 10(03), 1263–1274. http://www.iaeme.com/IJMET/index.asp1263http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=3http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&IType=3http://www.iaeme.com/IJMET/index.asp1264
  12. Suarsana, I., Suryawan, I., Suardana, N. P. G., Winaya, S., Soenoko, R., Suyasa, B., Sunu, W., & Rasta, M. (2021). Flexural strength of hybrid composite resin epoxy reinforced stinging nettle fiber with silane chemical treatment. AIMS Materials Science, 8(2), 185–199. https://doi.org/10.3934/matersci.2021013
  13. Suryawan, I. G. P. A., Suardana, N. P. G., Winaya, I. N. S., & Suyasa, I. W. B. (2020). A Study on Correlation Between Hardness and Thermal Conductivity of Polymer Composites Reinforced with Stinging Nettle Fiber. International Journal of Civil Engineering and Technology (IJCIET), 11(1), 94–104
  14. Utami, A. M. S., Syakur, A., & Hermawan, H. (2021). Analysis of Leakage Current and Insulator Resistivity for Quality Assurance of Medium Voltage Network Polymer Insulators Alumina - SiO2 in Tropical Climate Simulator Room. Teknik, 42(1), 10–19. https://doi.org/10.14710/teknik.v42i1.36152
  15. Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806–819. https://doi.org/10.1016/j.compositesa.2010.03.005

Last update:

No citation recorded.

Last update: 2024-06-11 02:15:37

No citation recorded.