skip to main content

Design of Personal Health Monitoring Devices for Early Detection of Silent Hypoxia

Rancang Bangun Alat Pemantau Kesehatan Perorangan untuk Deteksi Dini Silent Hypoxia

Heri Kuswoyo  -  Pusat Unggulan – Pengembangan, Pengujian dan Kalibrasi Peralatan Kesehatan, Politeknik Kesehatan Kementerian Kesehatan Republik Indonesia Jakarta II, Indonesia
*Ernia Susana orcid scopus publons  -  Jurusan Teknik Radiodiagnostik & Radioterapi, Politeknik Kesehatan Kementerian Kesehatan Republik Indonesia Jakarta II, Indonesia
Hendrana Tjahjadi orcid scopus  -  Program Studi Teknik Elektro, Fakultas Teknik Militer, Universitas Pertahanan, Indonesia
Open Access Copyright (c) 2022 TEKNIK

Citation Format:
Abstract
Silent hypoxia in Covid-19 patients and symptoms of severe hypoxemia require appropriate treatment. These cases often appear asymptomatic but risk fatal to life-threatening. One of the recommended devices is pulse oximetry. Embedded systems technologies and the Internet of Things (IoT) can develop low-cost personal health monitoring devices. This study developed a pulse oximetry prototype integrated with a digital temperature sensor and equipped with the interpretation results of both "normal" and "hypoxic" conditions. It is called OxyTemp. IoT technologies monitor user conditions remotely using the Blynk application via mobile phones. This study used Research & Development with the Reverse engineering method. The OxyTemp has Different types of prototype testing are physical and functional inspection, electrical safety testing, and performance testing of each parameter using an appropriate calibrator. The working method refers to SK Direktur Jenderal Pelayanan Kesehatan Tahun 2018 No. 041-18 on Pulse Oximeter Testing Working Methods.
Fulltext View|Download
Keywords: silent hypoxia; pulse oximeter; temperature; hypoxemia; IoT; embedded system; blynk

Article Metrics:

  1. ArduinoModules. (2020). KY-028 digital temperature sensor module. Diakses dari https://arduinomodules.info/ky-028-digital-temperature-sensor-module/, tanggal 25 Desember 2021
  2. Chatterjee, S., & Kyriacou, P. A. (2019). Monte Carlo analysis of optical interactions in reflectance and transmittance finger photoplethysmography. Sensors, 19(4), 789
  3. Dabukke, H., Sijabat, S., & Adiansyah, A. (2020). Rancang Bangun Pulse Oximetry (SPO2) Pada Alat Pasien Monitor. Jurnal Teknologi Kesehatan Dan Ilmu Sosial (TEKESNOS), 2(2), 122-137
  4. Food and Drug Administration. (2021). Pulse Oximeter Accuracy and Limitations: FDA safety Communication. Diakses dari https://www.fda.gov/medical-devices/safety-communications/pulse-oximeter-accuracy-and-limitations-fda-safety-communication, tanggal 19 Desember 2021
  5. Tachiyat, S. Z., Imanda, A. R., & Tholib, M. A. (2020). Rancang Bangun Sistem Monitoring Denyut Jantung SpO2 dan Suhu Tubuh Penderita COVID-19 Berbasis IoT. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 6(2), 120-130
  6. Direktur Jenderal Pelayanan Kesehatan. (2018). Metode Kerja Pengujian dan Kalibrasi Alat Kesehatan. Jakarta: Kementerian Kesehatan Republik Indonesia
  7. Nugraha, A. W., & Prasetyo, I. (2020). Alat Monitoring Detak Jantung, Kadar Oksigen Dalam Darah Dan Suhu Tubuh Berbasis Internet of Things. Autocracy. Jurnal Otomasi, Kendali, dan Aplikasi Industri, 7(1), 42-47
  8. Samsugi, S., Ardiansyah, & Kastutara, D. (2018). Arduino Dan Modul Wifi Esp8266 Sebagai Media Kendali Jarak Jauh Dengan Antarmuka Berbasis Android. TEKNOINFO, 12(1), 23-27
  9. World Health Organization (2021). Interim Guidance for Member States - On the Use of Pulse
  10. Oximetry in Monitoring Covid-19 Patients Under HomeBased Isolation and Care. Diakses dari https://www.afro.who.int/sites/default/files/Covid-19/ tanggal 18 Desember 2021
  11. Yuliana. (2020). Corona Virus sebuah tinjauan literatur. Wellness and Healthy Magazine, 2(1), 187-192

Last update:

No citation recorded.

Last update:

No citation recorded.