skip to main content

Mg-0.5Ca-4Zn-xCaCO3 (x=8, 10) Alloy Foams with Closed-Pore Structure Synthesized by Powder Metallurgy Process for Implant Applications

*Aprilia Erryani  -  National Research and Innovation Agency, Indonesia
Franciska Pramuji Lestari  -  National Research and Innovation Agency, Indonesia
Joko Triwardono  -  National Research and Innovation Agency, Indonesia
Bunga Rani Elvira  -  National Research and Innovation Agency, Indonesia
Bintoro Siswayanti  -  National Research and Innovation Agency, Indonesia
Albertus Deny Hadi Setiawan  -  National Research and Innovation Agency, Indonesia
Open Access Copyright (c) 2023 TEKNIK

Citation Format:
Abstract
This work aims to synthesize Mg-0.5Ca-4Zn alloy foams using a CaCO3 foaming agent and a powder metallurgy (PM) process. Mg-0.5Ca-4Zn-xCaCO3 (x=8, 10 wt.%) alloy precursors were prepared by mixing Mg, Ca, and Zn metal powders with CaCO3 granules, compacting, and then sintering at various temperatures (i.e., 650, 675, and 700 °C) for 5 hours in an argon atmosphere. The pore morphology was observed by scanning electron microscopy (SEM), and the phase formation was analyzed using X-ray diffractometry (XRD). The density and porosity were evaluated using an Archimedes test (ASTM B311-93). The compressive strength was examined using a universal testing machine (UTM) with a constant crosshead speed of 1.3 mm/min (ASTM D695-02). SEM observation reveals the formation of pores with a closed-cell type structure in all alloy compositions. Increasing either the CaCO3 content or sintering temperature results in an increase in porosity and pore sizes but a decrease in compressive strength. The maximum porosity of 43.208% was obtained in the alloy foam with 10 wt.% CaCO3 sintered at 700 °C; the foam exhibits a compressive strength of 52.9 MPa, close to cancellous bone.
Fulltext View|Download
Keywords: alloy foam; CaCO3 foaming agent; Mg-Zn-Ca alloys; closed-pore structure

Article Metrics:

  1. Annur, D., Lestari, F. P., Erryani, A., Amal, M. I., Sitorus, L. S., & Kartika, I. (2016). The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process. In International Conference on Advanced Materials Science and Technology (ICAMST 2015) (pp. 020032-1–6) Semarang, Indonesia: Semarang State University
  2. Cai, S., Lei, T., Li, N., & Feng, F. (2012). Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Materials Science and Engineering C, 32(8), 2570–2577
  3. Carter, D. R., & Hayes W.C. (1977) The compressive behavior of bone as a two-phase porous structure. Clinical Orthopaedics and Related Research, 59A, 954–962
  4. Dargusch, M.S., Balasubramani, N., Yang, N., Johnston, S., Ali, Y., Wang, G., Venezuela, J., Carluccio, J., Lau C., Allavena, R., Liang, D., Mardon, K., & Ye, Q. (2022). In vivo performance of a rare earth free Mg–Zn–Ca alloy manufactured using twin roll casting for potential applications in the cranial and maxillofacial fixation devices, Bioactive Materials, 12, 85-96
  5. Ding, Y., Wen, C., Hodgson, P., & Li, Y. (2014). Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. Journal of Material Chemistry B, 2, 1912-1933
  6. Doležal, P., Zapletal, J., Fintová, S., Trojanová, Z., Greger, M., Roupcová, P., & Podrábskỳ, T. (2016). Influence of processing techniques on microstructure and mechanical properties of a biodegradable Mg-3Zn-2Ca alloy. Materials, 9(11), 880
  7. Erryani, A., Lestari, F. P., Annur, D., Kartika, I., & Sriyono, B. (2015). Structural properties of Mg-Ca-Zn alloy with addition of CaCO3 as foaming agent prepared by powder metallurgy method. In International Conference Material and Metallurgical Technology (pp. 423–434). Surabaya, Indonesia: Department of Materials and Metallurgical Engineering, ITS
  8. Fedunik-Hofman, L., Bayon, A., & Donne, S. W. Comparative Kinetic Analysis of CaCO3/CaO Reaction System for Energy Storage and Carbon Capture. Applied Sciences, 9(21), 4601
  9. Ginebra, M. P., & Montufar, E. B. (2019) Cements as bone repair materials. In Pawelec, K.M., & Planell, J.A. (Eds.) In Woodhead Publishing Series in Biomaterials: Bone Repair Biomaterials (pp. 233-271). 2nd Ed. Woodhead Publishing
  10. Gonzalez, S., Pellicer, E., Surinach, S., Baro, M. D., & Sort, J. (2013). Biodegradable and Mechanical Integrity of Magnesium and Magnesium Alloys Suitable for Implants. In Biodegradation Engineering and Technology. (pp. 316-317). IntechOpen
  11. Harandi, S. E., Mirshahi, M., Koleini, S., Idris, M. H., Jafari, H., & Kadir, M. R. A. (2013). Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable mg-ca binary alloy. Materials Research, 16(1), 11–18
  12. Hofstetter, J., Becker, M., Martinelli, E., Weinberg, A.M., Mingler, B., Kilian, H., Pogatscher, S., Uggowitzer, P. J., & J. F. Löffler, J. F. (2014). High-Strength Low-Alloy (HSLA) Mg–Zn–Ca Alloys with Excellent Biodegradation Performance. JOM, 66, 566–572
  13. Hussein, R. O., & Northwood, D. O. (2014). Improving the performance of magnesium alloys for automotive applications. WIT Transactions on the Built Environment, 137, 531–544
  14. Kennedy, A. (2012). Porous Metals and Metals Foams Made from Powder (p. 38). University of Nottingham: IntechOpen
  15. Lestari, P. L., Marta, S., Eryanni, A., Mulyati, I., & Kartika, I. (2020). In Vitro Corrosion of Quaternery Magnesium Alloy Foam by Addition of Zinc. Journal of Electronics, Electromedical, and Medical Informatics, 2(3), 86-92
  16. Lietaert, K., Weber, L., Van Humbeeck, J., Mortensen, A., Luyten, J., & Schrooten, J. (2013). Open cellular magnesium alloys for biodegradable orthopaedic implants. Journal of Magnesium and Alloys, 1(4), 303–311
  17. Lu, G. Q., Hao, H., Wang, F. Y., & Zhang, X. G. (2013). Preparation of closed-cell Mg foams using SiO2-coated CaCO3 as blowing agent in atmosphere. Transactions of Nonferrous Metals Society of China (English Edition), 23(6), 1832–1837
  18. Lu, Y. U. (2014). Microstructure and Degradation Behaviour of Mg-Zn(-Ca) Alloys. PhD Thesis. University of Birmingham
  19. Peron, M., Torgersen, J., & Berto, F. (2017). Mg and its alloys for biomedical applications: Exploring corrosion and its interplay with mechanical failure. Metals, 7(7), 252
  20. Rad, H. R. B., Idris, M. H., Kadir, M. R. A., & Farahany, S. (2012). Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys. Materials & Design, 33, 88-97
  21. Sahinoja, M. T. (2013). Study of Magnesium Metal and Its Alloys As a Biodegradable Material for Medical and Electrical. Master's Thesis. Tampere University of Technology
  22. Salleh, E. M., Ramakrishnan, S., & Hussain, Z. (2016). Synthesis of Biodegradable Mg-Zn Alloy by Mechanical Alloying : Effect of Milling Time. Procedia Chemistry, 19, 525–530
  23. Salvetr, P., Novák, P., & Vojtěch, D. (2016). Porous magnesium alloys prepared by powder metallurgy. Materiali in Tehnologije, 50(6), 917–922
  24. Schaublin, R. E., Becker, M., Cihova, M., Gerstl, S. S. A., Deiana, D., Hebert, C., Pogatscher, S., Uggowitzer, P. J., & Loffler, J. F. (2022). Precipitation in lean Mg-Zn-Ca alloys. Acta Materialia, 239, 118223
  25. Seyedraoufi, Z. S., & Mirdamadi, S. (2013). Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 21, 1–8
  26. Tu, T., Chen, X. H., Chen, J., Zhao, C. Y., & Pan, F. S. (2019). A High-Ductility Mg–Zn–Ca Magnesium Alloy. Acta Metallurgica Sinica, 32, 23-30
  27. Yang, D., Chen, W., Lu, J., Hu, Z., Feng, Y., Chen, J., Jiang, J., Ma, A., Wang, L., Wang, H. (2017). Fabrication of Cellular Mg Alloy By Gas Release Reaction Via Powder Metallurgi Approach. Metal Powder Report, 72 (2), 124-127
  28. Yusop, A. H., Bakir, A. A., Shaharom, N. A., Abdul Kadir, M. R., & Hermawan, H. (2012). Porous biodegradable metals for hard tissue scaffolds: A review. International Journal of Biomaterials, 2012, 641430
  29. Zeng, R.C., Qi, W.C., Cui, H.Z., Zhang, F., Li, S.Q., & Han, E.H. (2015). In vitro corrosion of as-extruded Mg–Ca alloys—The influence of Ca concentration. Corrosion Science, 96, 23-31

Last update:

No citation recorded.

Last update: 2024-05-11 23:45:27

No citation recorded.