skip to main content

Sistem Dinamis dan HECRAS sebagai Alat Pengambil Keputusan Model Ketahanan Banjir

*Retno Tri Nalarsih scopus  -  Departement of Civil Engineering, Universitas Veteran Bangun Nusantara, Jl. S. Humardani No.1, Sekoharjo,57521, Indonesia
Open Access Copyright (c) 2024 TEKNIK

Citation Format:
Abstract
Banjir yang terjadi di Kijang Kota, Kecamatan Bintan Timur, Kabupaten Bintan dipengaruhi oleh kecepatan angin, kelembaban udara, temperatur, elevasi, dan tekanan udara yang mengakibatkan curah hujan tinggi, mempengaruhi infiltrasi, genangan, dan kinerja drainase. Penelitian ini menggunakan metode spasial HECRAS untuk mendapatkan area banjir dan genangan diikuti pendekatan Sistem Dinamik (SD). Hasil spasial yang diintegrasi model SD memberikan strategi yang terarah, secara real time. Hasil simulasi HECRAS sepanjang drainase Hilir hingga Hulu terjadi banjir, berkarakter genangan. Solusi drainase longstorage dan di Kampung Pisang dipasang pintu klep drainase sekunder ke primer dan kesepakatan konservasi SDA yang terintegrasi pemeliharaan drainase serta lahan semak belukar menambah DTA. Keuntungan unik dari model HECRAS dan SD adalah program konservasi bekerja maksimal saat mengintervensi infiltrasi sebesar 30%, artinya kinerja konservasi dalam penyelesaian masalah drainase harus dilakukan sebesar 30% dari keseluruhan kegiatan konservasi tersebut. SD mampu membuat simulasi dan solusi secara real time, dimana Submodel berikutnya nilai genangan turun sehingga beban drainase turun, dari kedua sub model tersebut terbukti bahwa nilai rawan banjir turun, dapat selesai pada tahun ke 4, dan tahun berikutnya harus membuat pengembangan solusi sesuai kebutuhan konservasi dan kinerja drainase.
Fulltext View|Download

Article Metrics:

  1. Appiah, J. O., Agyemang-Duah, W., & Adei, D. (2024). Analysis of the relationship between forest patch degradation, land uses, and terrain variables in a protected landscape in Ghana. Trees, Forests and People, 16(May), 100587. https://doi.org/10.1016/j.tfp.2024.100587
  2. Astuti, R. D. P., & Mallongi, A. (2020). Using system dynamic modeling for improving water security in the coastal area: A literature review. Open Access Macedonian Journal of Medical Sciences, 8(F). https://doi.org/10.3889/oamjms.2020.4395
  3. Desalegn, H., & Mulu, A. (2021). Mapping flood inundation areas using GIS and HEC-RAS model at Fetam River , Upper Abbay Basin , Ethiopia. Scientific African, 12, e00834. https://doi.org/10.1016/j.sciaf.2021.e00834
  4. Dinis, P. A., Huvi, J., Pinto, M. C., Carvalho, J., & Lorenzo-Lacruz, J. (2021). Disastrous Flash Floods Triggered by Moderate to Minor Rainfall Events. Recent Cases in Coastal Benguela (Angola). https://doi.org/10.3390/hydrology8020073
  5. Gabino, A., & Hernández, M. (2022). System Dynamics Modelling and Climate Change Adaptation in Coastal Areas: A Literature Review (Alberto Gabino Martínez-Hernández (ed.); 1st ed., Vol. 1, Issue 1). Fondazione Eni Enrico Mattei (ADAPT@VE). https://rdu.unc.edu.ar/bitstream/handle/11086/549456/Manual de odontología legal.pdf?sequence=3
  6. Gao, P., Gao, W., & Ke, N. (2021). Assessing the impact of flood inundation dynamics on an urban environment. Natural Hazards, 109(1), 1047–1072. https://doi.org/10.1007/s11069-021-04868-6
  7. Gohari, A., Mirchi, A., & Madani, K. (2017). System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran. Water Resources Management, 31(5), 1413–1434. https://doi.org/10.1007/s11269-017-1575-z
  8. Harms, J. Z., Malard-Adam, J. J., Adamowski, J. F., Sharma, A., & Nkwasa, A. (2023). Dynamically coupling system dynamics and SWAT+ models using Tinamït: Application of modular tools for coupled human-water system models. Hydrology and Earth System Sciences, 27(8), 1683–1693. https://doi.org/10.5194/hess-27-1683-2023
  9. Ibrahim, O. A., Goshime, D. W., Tekleab, S., & Absi, R. (2024a). Flood Inundation mapping and mitigation options in data-scarce region of Beledwayne town in the Wabi Shebele River Basin of Somalia. Natural Hazards Research, 4(October 2023), 336–346. https://doi.org/10.1016/j.nhres.2023.11.001
  10. Ibrahim, O. A., Goshime, D. W., Tekleab, S., & Absi, R. (2024b). Flood Inundation mapping and mitigation options in data-scarce region of Beledwayne town in the Wabi Shebele River Basin of Somalia. Natural Hazards Research, 4(August 2023), 336–346. https://doi.org/10.1016/j.nhres.2023.11.001
  11. Islam, R., Kamaruddin, R., Ahmad, S. A., Jan, S. J., & Anuar, A. R. (2016). A review on mechanism of flood disaster management in Asia. International Review of Management and Marketing, 6(1), 29–52
  12. Joakim, E. P., Mortsch, L., Oulahen, G., Harford, D., Klein, Y., Damude, K., & Tang, K. (2016). Using system dynamics to model social vulnerability and resilience to coastal hazards. International Journal of Emergency Management, 12(4), 366–391. https://doi.org/10.1504/IJEM.2016.079846
  13. Kastridis, A., & Stathis, D. (2020). Evaluation of hydrological and hydraulic models applied in typical mediterranean ungauged watersheds using post-flash-flood measurements. Hydrology, 7(1). https://doi.org/10.3390/hydrology7010012
  14. Khattak, M. S., Anwar, F., Saeed, T. U., Sharif, M., Sheraz, K., & Ahmed, A. (2016). Floodplain Mapping Using HEC-RAS and ArcGIS: A Case Study of Kabul River. Arabian Journal for Science and Engineering, 41(4), 1375–1390. https://doi.org/10.1007/s13369-015-1915-3
  15. Kitsikoudis, V., Erpicum, S., Rubinato, M., Shucksmith, J. D., Archambeau, P., Pirotton, M., & Dewals, B. (2021). Exchange between drainage systems and surface flows during urban flooding: Quasi-steady and dynamic modelling in unsteady flow conditions. Journal of Hydrology, 602(March), 126628. https://doi.org/10.1016/j.jhydrol.2021.126628
  16. Kurniati, R., Pakpahan, S. L. H., & Mulya, A. (2021). Analisis Kejadian Hujan Lebat Menggunakan Citra Satelit HIMAWARI-8 (Studi Kasus Pulau Bintan, 7 November 2020). Prosiding Seminar Nasional, 3(1), 130–141
  17. Magdalena, I., Imawan, R., & Nugroho, M. A. (2024). Numerical investigation for water flow in an irregular channel using Saint-Venant equations. Journal of King Saud University - Science, 36(7). https://doi.org/10.1016/j.jksus.2024.103237
  18. Nalarsih, R. T. (2021). The Pattern of Water Resources Resilience in Coastal Areas Centered on Balance in Society 5.0 in Book Chapter Socoety 5.0 Leading in The Borderless World. In Diah Karmiyati (Ed.), Book Chapter (1st ed., p. 253). Book Chapter on Bildung Nusantara
  19. Nalarsih, R. T. (2023). GIS As aTool in Hydrometeorological Disaster Mitigation Policy in Society 5.0 in Book Chapter A REFLECTION OF 2022, A LOOK AHEAD TO 2023. In D. Karmiyati (Ed.), Book Chapter (2023rd ed., Vol. 1, pp. 410–415). BILDUNG. https://pascasarjana.umm.ac.id/id/pages/detail/publikasi-60/bookchapter-vp-genap-20212022-a-reflection-of-2022-and-look-ahead-to-2023.html
  20. Nalarsih, R. T., Herawati, H., Yuniwati, E. D., Sulistyo, M. A. B., Taufikkurrahman, & Handajani, M. (2024). Flood Vulnerability and Resiliency in Coastal Areas Based on Geographic Information Systems (GIS) and Dynamic. International Journal on Advanced Science, Engineering and Information Technology, 14(1 SE-Articles), 81–88. https://doi.org/10.18517/ijaseit.14.1.19339
  21. Nalarsih, R. T., Yuwono, N., & Winaktoe, W. W. (2020). Perlindungan dan Pengelolaan Sumber Daya Pantai Tanjung Pinang yang Berkelanjutan. Civil Engineering, Environmental, Disaster and Risk Management Symposium 2020 , 1–6
  22. Natakusumah, D. K., Hatmoko, W., & Harlan, D. (2011). Prosedur Umum Perhitungan Hidrograf Satuan Sintetis dengan Cara ITB dan Beberapa Contoh Penerapannya. Jurnal Teknik Sipil, 18(3), 251. https://doi.org/10.5614/jts.2011.18.3.6
  23. Nikolic, V. V., & Simonovic, S. P. (2015). Multi-method Modeling Framework for Support of Integrated Water Resources Management. Environmental Processes, 2(3), 461–483. https://doi.org/10.1007/s40710-015-0082-6
  24. Oduro Appiah, J., Agyemang-Duah, W., Sobeng, A. K., & Kpienbaareh, D. (2021). Analysing patterns of forest cover change and related land uses in the Tano-Offin forest reserve in Ghana: Implications for forest policy and land management. Trees, Forests and People, 5, 100105. https://doi.org/10.1016/j.tfp.2021.100105
  25. Prastica, R. M. S., Maitri, C., Hermawan, A., Nugroho, P. C., Sutjiningsih, D., & Anggraheni, E. (2018). Estimating design flood and HEC-RAS modelling approach for flood analysis in Bojonegoro city. IOP Conference Series: Materials Science and Engineering, 316(1). https://doi.org/10.1088/1757-899X/316/1/012042
  26. Prigent, C., Papa, F., Aires, F., Rossow, W. B., & Matthews, E. (2007). Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research Atmospheres, 112(12), 1993–2000. https://doi.org/10.1029/2006JD007847
  27. Qian, Q., Edwards, D. J., Zhang, Y., & Haselbach, L. (2024). Improving Flood Inundation Mapping Accuracy Using HEC-RAS Modeling: A Case Study of the Neches River Tidal Floodplain in Texas. Journal of Hydrologic Engineering, 29(4), 1–13. https://doi.org/10.1061/jhyeff.heeng-6037
  28. Qin Huanhuan, Zhang Baoxiang, & Meng Fanhai. (2016). System Dynamics Modeling for Sustainable Water Management of a Coastal Area in Shandong Province, China. Journal of Computing in Civil Engineering, 6(4), 226–234. https://doi.org/10.17265/2159-581x/2016.04.005
  29. Rangari, V. A., Umamahesh, N. V., & Bhatt, C. M. (2019). Assessment of inundation risk in urban floods using HEC RAS 2D. Modeling Earth Systems and Environment, 5(4), 1839–1851. https://doi.org/10.1007/s40808-019-00641-8
  30. Saghafian, B., Farazjoo, H., Bozorgy, B., & Yazdandoost, F. (2008). Flood intensification due to changes in land use. Water Resources Management, 22(8), 1051–1067. https://doi.org/10.1007/s11269-007-9210-z
  31. Syahroni, M., Amri, K., & Afrizal, Y. (2017). Analisis Debit Puncak Menggunakan Metode Hidrograf Satuan Sintetis ITB 1 dan HEC-RAS Versi 5.0.7. Jurnal Inersia Universitas Bengkulu, 13(1), 17–24
  32. Umugwaneza, A., Chen, X., Liu, T., Li, Z., Uwamahoro, S., Mind’je, R., Umwali, E. D., Ingabire, R., & Uwineza, A. (2021). Future climate change impact on the nyabugogo catchment water balance in rwanda. Water (Switzerland), 13(24), 1–18. https://doi.org/10.3390/w13243636

Last update:

No citation recorded.

Last update: 2024-11-20 20:58:36

No citation recorded.