skip to main content

Analysis of Changes in Sedimentation Volume of Kuwil Kawangkoan Reservoir with USLE Method and Area Reduction Method

*Radya Gading Widyatama  -  "Department of Civil Engineering, Diponegoro University, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275", Indonesia
Suharyanto Suharyanto  -  "Department of Civil Engineering, Faculty of Engineering, Diponegoro Univer, Indonesia
Open Access Copyright (c) 2025 TEKNIK

How to cite (IEEE): R. G. Widyatama, and S. Suharyanto, "Analysis of Changes in Sedimentation Volume of Kuwil Kawangkoan Reservoir with USLE Method and Area Reduction Method," TEKNIK, vol. 46, no. 2, pp. 164-170, Mar. 2025. https://doi.org/10.14710/teknik.v46i2.65307
Citation Format:
Abstract
Sediment deposited in the reservoir will increase in line with the total erosion rate. This causes the dead storage capacity of the reservoir to siltation, so studies need to be performed to estimate the amount of erosion rate and sediment distribution during the reservoir's operational period. The study location is at the Kuwil Kawangkoan Reservoir, North Minahasa Regency, North Sulawesi Province. The study aims to determine the reservoir erosion rate using the USLE Method based on Geographic Information Systems (GIS) and to analyze changes in the reservoir sedimentation storage volume using the Area Reduction Method. Based on the analysis, the volume of sediment deposited in the Kuwil Kawangkoan Reservoir catchment area is 307,382.08 m3/tahun. Over a 50-year lifespan, the predicted total volume of settled sediment is 15.369 million m3. The results of the sediment distribution analysis indicate that after 50 years, only 17.82% of the dead storage capacity will remain. Initially, the dead storage capacity of the reservoir was 7.63 million m³, but it is projected to decrease to 1.36 million m³ at an elevation of +77.00 m, below the intake elevation. Since the intake elevation of the Kuwil Kawangkoan Reservoir is at +83.50 m, the operation of Kuwil Kawangkoan Reservoir to fulfil water demand downstream is relatively unaffected.
Fulltext View|Download
Keywords: Area Reduction; Erosion; Kuwil Kawangkoan Reservoir; Universal Soil Loss Equation (USLE)

Article Metrics:

  1. Akplo, T., Kouelo Alladassi, F., Houngnandan, P., Aliou, S., Moncef, B., & Anastase, A. (2020). Mapping the risk of soil erosion using RUSLE, GIS and remote sensing: A case study of Zou watershed in central Benin. 281–290
  2. Asdak, C. (2022). Hidrologi dan Pengelolaan Daerah Aliran Sungai. Gadjah Mada Univesity Press
  3. Asrib, A. R. (2012). Model Pengendalian Sedimentasi Waduk Akibat Erosi Lahan Dan Longsoran Di Waduk Bili-Bili Sulawesi Selatan. Desertation. Institut Pertanian Bogor
  4. Brune, G. M. (1953). Trap efficiency of reservoirs. Eos, Transactions American Geophysical Union, 34(3), 407–418
  5. Juldah, H., Asmaranto, R., & Sholichin, M. (2023). Analisa Pengaruh Perubahan Tata Guna Lahan Terhadap Usia Guna Waduk Ngancar. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 3(2), 1–14
  6. Kironoto, B. A., & Yulistiyanto, B. (2000). Konservasi lahan. Yogyakarta: Universitas Gadjah Mada
  7. Krisnayanti, D. S., Udiana, I. M., & Muskanan, M. J. (2018). Pendugaan Erosi dan Sedimentasi Menggunakan Metode USLE dan MUSLE Pada DAS Noel-Puames. Jurnal Teknik Sipil, 7(2), 143–154
  8. Mamo, M. G., Yimer, Y. M., & Lenjiso, M. D. (2019). Potential Soil Erosion Mapping Using RUSLE, Remote Sensing and GIS: The Case Study of Wolaita Sodo Town and Surrounding Area, SNNPR, Ethiopia
  9. International Journal of Science, Engineering and Technology, 7(1), 25–44
  10. Morris, G. L., & Fan, J. (1998). Reservoir Sedimentation Handbook. McGraw-Hill Book Co
  11. Mukti, H. A. (2019). Erosion analysis in efforts to sustain the age of use of the kedungombo reservoir. International Journal of Scientific and Technology Research, 8(10), 1931–1940
  12. Nugroho, C. N. R., & Dibyosaputro, S. (2015). Pemetaan Tingkat Bahaya Erosi Menggunakan Model Revised Universal Soil Loss Equation (RUSLE) Di Daerah Aliran Sungai Petir Daerah Istimewa Yogyakarta. Jurnal Bumi Indonesia, 4(1)
  13. Perera, D., Williams, S., & Smakhtin, V. (2023). Present and future losses of storage in large reservoirs due to sedimentation: a country-wise global assessment. Sustainability, 15(1), 219
  14. Seran, S. S. L. M. F. (2022). Analisis Erosi Pada Das Noelmina Menggunakan Metode Usle. Eternitas: Jurnal Teknik Sipil, 2(1), 33–39
  15. Suripin. (2004). Sistem drainase perkotaan yang berkelanjutan. Andi
  16. Tukaram, S., Pt, N., & MR, G. (2016). Comparison of area reduction method and area increment method for reservoir sedimentation distribution-Case study Ujjani dam. International Journal of Research in Advanced Engineering and Technology, 2(3), 108–111
  17. Vanoni, V. A. (1975). Sedimentation engineering: American society of civil engineers, manuals and reports on engineering practice. No. 54. P, 745
  18. Xu, Z., Zhang, S., Hu, X., & Zhou, Y. (2024). Construction of a monthly dynamic sediment delivery ratio model at the hillslope scale: a case study from a hilly loess region. Frontiers in Environmental Science, 12, 1341868

Last update:

No citation recorded.

Last update: 2025-04-27 04:04:01

No citation recorded.