skip to main content

Air Pollution Control Analysis at the Tofu Industry Center in Sugihmanik Village, Grobogan Regency

*Haryono Setiyo Huboyo orcid scopus  -  Deptemen Teknik Lingkungan, Fakultas Teknik, Universitas Diponegoro, Indonesia
Bimastyaji Surya Ramadan  -  Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH, UNDIP Tembalang Campus, Semarang, Indonesia 50275, Indonesia
Melinda Tri Undari  -  Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH, UNDIP Tembalang Campus, Semarang, Indonesia 50275, Indonesia
Fitria Umi Fauziyah  -  Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH, UNDIP Tembalang Campus, Semarang, Indonesia 50275, Indonesia
Wahyul Amien Syafei  -  Department of Electrical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH, UNDIP Tembalang Campus, Semarang, Indonesia 50275, Indonesia
Babucarr Jassey  -  Department of Public Health Services, Ministry of Health, The Gambia, West Africa, Gambia
Open Access Copyright (c) 2025 TEKNIK

Citation Format:
Abstract

Air pollution in Grobogan Regency, especially particulate parameters, annually shows an average value of 69% of ambient air quality standards with an average concentration of PM2.5 reaching 38 μg/m³, primarily due to industrial activities, transportation, and the burning of fossil fuels. In the Sugihmanik Village Tofu Industrial Centre, Grobogan Regency, there are 30 home-based tofu SMEs that use rice husks as fuel for boiler furnaces, which produce pollutants such as SO₂, NO₂, CO₂, CO, PM₂.₅, PM₁₀, and TSP. The largest tofu factory in Sugihmanik Village uses 400 kg of rice husks daily. The chimney design, which does not comply with the technical standards of Kepdal No. 205 of 1996, further increases the risk of air pollution. Therefore, the design of an air pollution control device and a chimney redesign are required to mitigate these negative effects. After calculating the emission concentrations and comparing them with PermenLH No. 7 of 2007, only total particle parameter close to the quality standard of 350 mg/m3 with a particulate loading emitted from the furnace of 232 mg/s. By using a cyclone as an emission control device, there is a particulate removal efficiency of 53.05%. With the implementation of air pollution control devices, the ambient air concentration of particulates, previously a peak concentration of around 300 µg/m3, can be reduced to around 68.8 µg/m3.

Fulltext View|Download
Keywords: Chimney, Emission, Tofu Industry, Air Pollution, Rice Husk

Article Metrics:

  1. Amin, M., Ramadhani, A. A. T., Putri, R. M., Auliani, R., Torabi, S. E., Hanami, Z. A., Suryati, I., & Bachtiar, V. S. (2025). A review of particulate matter (PM) in Indonesia: trends, health impact, challenges, and options. Environmental Monitoring and Assessment, 197(1). https://doi.org/10.1007/s10661-024-13426-z
  2. Andini, A., Bonnet, S., Rousset, P., & Hasanudin, U. (2018). Impact of open burning of crop residues on air pollution and climate change in Indonesia. Current Science, 115(12), 2259–2266. https://doi.org/10.18520/cs/v115/i12/2259-2266
  3. Badan Pusat Statistik. (2023). Kabupaten Grobogan Dalam Angka Tahun 2023. Semarang : Badan Pusat Statistik
  4. Brooks, N., Biswas, D., Hossin, R., Yu, A., Saha, S., Saha, S., ... & Luby, S. P. (2023). Health consequences of small-scale industrial pollution: evidence from the brick sector in Bangladesh. World Development, 170, 106318
  5. Furizal, Ma’arif, A., Suwarno, I., Masitha, A., Aulia, L., & Sharkawy, A. N. (2024). Real-Time Mechanism Based on Deep Learning Approaches for Analyzing the Impact of Future Timestep Forecasts on Actual Air Quality Index of PM10. Results in Engineering, 24(November), 103434. https://doi.org/10.1016/j.rineng.2024.103434
  6. Hartini, S., Azzahra, F., Purwaningsih, R., Ramadan, B. S., & Sari, D. P. (2023). Framework for Increasing Eco-efficiency in the Tofu Production Process: Circular Economy Approach. Production Engineering Archives, 29(4), 452–460. https://doi.org/10.30657/pea.2023.29.50
  7. Hartini, S., Ramadan, B. S., Purwaningsih, R., Sumiyati, S., & Kesuma, M. A. A. (2021). Environmental impact assessment of tofu production process: Case study in SME Sugihmanik, Grobogan. IOP Conference Series: Earth and Environmental Science, 894(1). https://doi.org/10.1088/1755-1315/894/1/012004
  8. Irfan, M., Riaz, M., Arif, M. S., Shahzad, S. M., Saleem, F., -Rahman, N. U., van den Berg, L., & Abbas, F. (2014). Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan. Atmospheric Environment, 84, 189–197. https://doi.org/10.1016/j.atmosenv.2013.11.046
  9. Kementerian Lingkungan Hidup Republik Indonesia. (2007). Peraturan Menteri Negara Lingkungan Hidup Nomor 7 Tahun 2007 tentang Baku Mutu Emisi Sumber Tidak Bergerak Bagi Ketel Uap. Jakarta: Kementerian Lingkungan Hidup
  10. Kementerian Lingkungan Hidup Republik Indonesia. (1996). Keputusan Menteri Negara Lingkungan Hidup Nomor 205 Tahun 1996 tentang Pedoman Teknis Pengendalian Pencemaran Udara Sumber Tidak Bergerak. Jakarta: Kementerian Lingkungan Hidup
  11. Kurniawati, S. D., Supartono, W., & Suyantohadi, A. (2019). Life cycle assessment on a small scale tofu industry in Baturetno village - Bantu District - Yogyakarta. IOP Conference Series: Earth and Environmental Science, 365(1). https://doi.org/10.1088/1755-1315/365/1/012066
  12. Ningsih, L. M., Mazancová, J., Hasanudin, U., & Roubík, H. (2024). Energy audits in the tofu industry; an evaluation of energy consumption towards a green and sustainable industry. Environment, Development and Sustainability, 0123456789. https://doi.org/10.1007/s10668-024-05109-z
  13. Nugraha, M. G., Sharfan, A., Prakoso, V. S. Y., Hidayat, M., & Saptoadi, H. (2024). Particulate matter emission in agricultural biomass residue combustion. Global Journal of
  14. Environmental Science and Management, 10(3), 1047–1066. https://doi.org/10.22034/gjesm.2024.03.08
  15. Santoso, M., Marselina, M., Lestiani, D.D., Mukhtar, R. (2016). Karakteristik Partikulat Udara Ambien dan Terespirasi di Sekitar Kawasan Industri Non Formal. Jurnal Sains dan Teknologi Nuklir Indonesia, 17(1), 49-58
  16. Santoso, M., Lestiani, D. D., Kurniawati, S., Damastuti, E., Kusmartini, I., Atmodjo, D. P. D., Sari, D. K., Hopke, P. K., Mukhtar, R., Muhtarom, T., Tjahyadi, A., Parian, S., Kholik, N., Sutrisno, D. A., Wahyudi, D., Sitorus, T. D., Djamilus, J., Riadi, A., Supriyanto, J., … Suprayadi, L. S. (2020). Assessment of urban air quality in Indonesia. Aerosol and Air Quality Research, 20(10), 2142–2158. https://doi.org/10.4209/aaqr.2019.09.0451
  17. Theodore, Louis. (2008). Air Pollution Control Equipment Calculations. John Wiley & Sons, Inc
  18. Umar, D. F., Zulfahmi, Z., Setiawan, L., Gunawan, G., Prakosa, A., Wijaya, T., & Daranin, E. A. (2024). Torrefaction of rice husk as preparation of coal-biomass co-firing and its propensity on ash deposition. Rudarsko Geolosko Naftni Zbornik, 39(4), 125–136. https://doi.org/10.17794/rgn.2024.4.10

Last update:

No citation recorded.

Last update: 2025-07-04 14:28:57

No citation recorded.