skip to main content

IoT and Machine Learning-Based Electric Vehicle Development Strategy to Maximize Vehicle Life and Promote Green Mobility

*Callista Fabiola Candraningtyas orcid  -  Department of Environmental Science, Faculty Mathematics and Natural Science, Universitas Sebelas Maret, Jl. Ir. Sutami, Jebres, Surakarta, Indonesia 57126, Indonesia
Fikri Arkan Maulana  -  , Indonesia
Alles Anandhita Achmad  -  , Indonesia
Open Access Copyright (c) 2025 TEKNIK

Citation Format:
Abstract
This research explores innovative strategies for developing electric vehicles based on the Internet of Things (IoT) and Machine Learning with the aim of maximizing service life and encouraging green mobility. In the face of the climate crisis and the increasing need for sustainable energy, electric vehicles offer a potential solution to reduce carbon emissions in the transportation sector. However, the challenges of optimizing battery life and energy efficiency require new, smarter and more connected approaches. This research integrates IoT technology with machine learning to create a more efficient electric vehicle ecosystem. This technology enables extended battery life through better usage management, increased energy efficiency through operational optimization, and predictive maintenance that reduces vehicle downtime. The research methodology includes testing prototypes of electric vehicles equipped with IoT technology, field trials to collect performance data, comprehensive analysis, and data processing to evaluate the effectiveness of the implemented strategies. The research results show that the integration of IoT and Machine Learning in electric vehicles can significantly increase battery life, energy efficiency, and make a positive contribution to green mobility. This development strategy is expected to advance electric vehicle technology in Indonesia, reduce dependence on fossil fuels, and create a cleaner and more sustainable environment.
Fulltext View|Download
Keywords: Electric Vehicles; Internet of Things; Green Mobility; Machine Learning; Sustainable Transportation

Article Metrics:

  1. Arkaan, M. A. F. & Utaminingrum, F. 2023. Sistem Deteksi Permukaan Jalan pada Kursi Roda Pintar dengan Metode MobileNetV2. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 7, 608-612
  2. Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. 2020. Web of Science as a Data Source for Research on Scientific and Scholarly Activity. Quantitative Science Studies, 1, 363-376
  3. Bisri, M. Z. & Anzhory, I. Alat Monitoring Getaran Motor Listrik Induksi 1 Phase Berbasis Internet of Think (IoT). Innovative Technologica: Methodical Research Journal, 3(2), 6-6
  4. Emodi, N. V., Akuru, U. B., Dioha, M. O., Adoba, P., Kuhudzai, R. J., & Bamisile, O. (2023). The Role of Internet of Things on Electric Vehicle Charging Infrastructure and Consumer Experience. Energies, 16, 4248
  5. Eshankulov, K., Turdiyeva, G., Ismoilova, M., Murodova, G., & Murodova, R. (2021). Algorithm for the Integration of Software Modules Based on the Ontological Approach. Information Technologies and Intelligent Decision Making Systems
  6. Goh, H. A., Ho, C. K., & Abas. F. S. (2023). Front-end Deep Learning Web Apps Development and Deployment: A Review. Applied Intelligence, 53, 15923-15945
  7. International Energy Agency (IEA). (2022). Global EV Outlook 2022. Available online: https://www.iea.org/reports/global-ev-outlook-2022
  8. Khan, S., Parkinson, S., & Qin, Y. (2020). Machine Learning in Electric Vehicle Charging Infrastructure. IEEE Access, 8, 101000-101012
  9. Liyakat, K. S. S. (2023). IoT in Electrical Vehicle: A Study. Journal of Control and Instrumentation Engineering, 2, 15-21
  10. Piao, C., Liu, Q., Huang, Z., Cho, C., & Shu, X. (2012). VRLA Battery Management System based on LIN Bus for Electric Vehicle. Advanced Technology in Teaching: International Conference on Teaching and Computational Science (ICTCS 2012). ICTS Publishing, 753-763
  11. Pritoni, M., Woolley, J. M., & Modera, M. P. (2017). Internet of Things (IoT) for Energy Efficiency in Buildings. Energy and Buildings, 144, 86-98
  12. Resosudarmo, B. P., Nurdianto, D. A., & Yusuf, A. A. (2009). Greenhouse Gas Emission in Indonesia: The Significance of Fossil Fuel Combustion. Palembang: Indonesian Regional Science Association, 146-159
  13. Savari, G. F., Krishnasamy, V., Sathik, J., Ali, Z. M., & Aleem, S. H. A. (2023). Internet of Things Based Real-Time Electric Vehicle Load Forecasting and Charging Station Recommendation. ISA Transactions, 97, 431-447
  14. Subekti, R. (2022). Urgensi Regulasi Kendaraan Listrik Untuk Pengendalian Iklim Dan Penggunaan Energi Terbarukan (Analisis Komparatif Antara Indonesia, China, Dan Amerika Serikat). Jurnal Rechts Vinding: Media Pembinaan Hukum Nasional, 11(3)
  15. Wahab, A. M. H., Anuar, N. I. M., Ambar, R., Baharum, A., Shanta, S., Sulaiman, M. S., & Hanafi, H. F. (2018). IoT Based Battery Monitoring System for Electric Vehicle. International Journal of Engineering & Technology (IJET), 7, 505-510
  16. Wawrzyniak, D. & Doryn, W. (2020). Does the Quality of Institutions Modify the Economic Growth-Carbon Dioxide Emissions Nexus? Evidence from a Group of Emerging and Developing Countries. Economic Research-Ekonomska Istrazivanja, 33, 124-144
  17. Wibowo, T. B. (2024). Development of Monitoring Tool System for Electric Vehicle Battery Energy Based on Internet of Things. Jurnal Teknik Mesin, 3, 262-26
  18. Xia, X., Xiong, W., & Shi, P. (2021). Optimizing Electric Vehicle Charging with IoT and Machine Learning Technologies. Journal of Cleaner Production, 294, 126276
  19. Zain, F. N., Martawati, M. E., & Rohman, F. (2023). Pengembangan Sistem Monitoring Kapasitas Baterai Kendaraan Listrik Berbasis Internet of Things. Jurnal Aplikasi Dan Inovasi Ipteks SOLIDITAS, 6, 92-97

Last update:

No citation recorded.

Last update: 2025-03-26 12:56:37

No citation recorded.