skip to main content

BENOSIN: Bread Waste Bioethanol Conversion Unit as an Innovation in Bioethanol Production Using Apple Peels to Achieve a Sustainable Green Economy

*Khansa Praningdita Sulistyo  -  Departement of Industrial Technology, Vocational School, Diponegoro University, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275|Universitas Diponegoro, Indonesia
Firda Cahya Salbina  -  Jurusan Teknologi Industri, Sekolah Vokasi, Universitas Diponegoro, Indonesia
Azelia Anisa Rahma  -  Jurusan Teknologi Industri, Sekolah Vokasi, Universitas Diponegoro, Indonesia
Open Access Copyright (c) 2025 TEKNIK

Citation Format:
Abstract

Currently, fuel oil is a primary natural resource in the transport sector. However, the availability of fossil fuels is shrinking while the demand for fuel is rising. Expired bread is not worthy of consumption and is often discarded without being used as something more economical and environmentally friendly.   Therefore, the study aims to convert bread waste into bioethanol (C2H5OH) as a gasoline mixture that can reduce emissions of pollutants such as carbon monoxide (CO) and potentially improve air quality. These bioethanol products will create energy security, reducing dependence on a single energy source.   Bread waste serves as a substrate with an apple peel catalyst. This method of making bioethanol is through fermentation assisted by Saccharomyces cerevisiae with the addition of urea fertilizer as a nutrient. The multistage distillation column is equipped with hydrophobic material to help the separation process. The results of this study show that bioethanol from expired bread waste is worthy of being used as a gasoline mixture for motor vehicle fuel. The ethanol produced is directly proportional to the amount of bread waste, but there is still a maximum limit. The time variations used are 24 hours, 48 hours, and 72 hours.   Based on this study, the optimal condition of Saccharomyces cerevisiae works at a temperature range of 30-35°C with a pH of 4-6.

Fulltext View|Download
Keywords: bioethanol; distillation; fermentation; apple peel; bread waste

Article Metrics:

  1. Wusnah, W., Bahri, S., & Hartono, D. (2020). Proses pembuatan bioetanol dari kulit pisang kepok (Musa acuminata BC) secara fermentasi. Jurnal Teknologi Kimia Unimal, 8(1), 48-56
  2. Bose, J., Chowdhury, S., Adhikari, U., & Sikder, J. (2024a). Optimisation of direct contact membrane distillation to enhance brackish water desalination and study polyvinylidene fluoride (PVDF) membrane performance. Computers & Chemical Engineering, 181, 108529
  3. Bose, J., Chowdhury, S., Adhikari, U., & Sikder, J. (2024b). Optimisation of direct contact membrane distillation to enhance brackish water desalination and study polyvinylidene fluoride (PVDF) membrane performance. Computers & Chemical Engineering, 181, 108529
  4. Cho, E. H., Jung, H. T., Lee, B. H., Kim, H. S., Rhee, J. K., & Yoo, S. H. (2019). Green process development for apple-peel pectin production by organic acid extraction. Carbohydrate polymers, 204, 97-103
  5. Cunha, C. B., Brondani, M., Mayer, F. D., Lopes, P. P., & Hoffmann, R. (2020). Low-cost small-scale distillation column: assessment of polymeric materials on its economic, chemical, mechanical, and environmental performance. Clean Technologies and Environmental Policy, 22, 1547-1563
  6. Herawati, N., Juniar, H., & Setiana, R. W. (2021). Pembuatan Bioetanol dari Pati Ubi Talas (Colocasia L. Schoot) dengan Proses Hidrolisis. Jurnal Distilasi, 6(1), 7-17
  7. Janković, T., Straathof, A. J., McGregor, I. R., & Kiss, A. A. (2024). Bioethanol separation by a new pass-through distillation process. Separation and Purification Technology, 336, 126292
  8. Dyani, O. K., & Rosariawari, F. (2021). Pemanfaatan Fermentasi Ampas Tebu untuk Pengembangan Energi Alternatif Non Fosil Dalam Bentuk Bioethanol Padat. Envirous, 1(2), 49-53
  9. Maryana, T., Silsia, D., & Budiyanto, B. (2020). Effect Of Yeast Concentration And Type On Bioethanol Production From Sugarcane Bagasse. Jurnal Agroindustri, 10(1), 47-56
  10. Muhamad, N. A. S., Mokhtar, N. M., Naim, R., Lau, W. J., & Ismail, N. H. (2024). Treatment of wastewater from oil palm industry in Malaysia using polyvinylidene fluoride-bentonite hollow fiber membranes via membrane distillation system. Environmental Pollution, 361, 124739
  11. Pietrzak, W., & Kawa-Rygielska, J. (2015). Simultaneous saccharification and ethanol fermentation of waste wheat–rye bread at very high solids loading: Effect of enzymatic liquefaction conditions. Fuel, 147, 236-242
  12. Singh, R., Langyan, S., Sangwan, S., Gaur, P., Khan, F. N., Yadava, P., ... & Sahu, P. K. (2022). Optimization and production of alpha-amylase using Bacillus subtilis from apple peel: Comparison with alternate feedstock. Food Bioscience, 49, 101978
  13. Sun, Q., Kong, S., Wang, L., Luo, H., Zhou, X., Zhang, W., & Wu, L. (2024). Facile preparation of superhydrophobic PVDF/MWCNTs distillation membranes: Synthesis, characteristics and separation performance. Separation and Purification Technology, 347, 127567
  14. Susmiati, Y. (2018). Prospek Produksi Bioetanol dari Limbah Pertanian dan Sampah Organik The Prospect of Bioethanol Production from Agricultural Waste and Organic Waste. Jurnal Teknologi Dan Manajemen Agroindustri, 7, 67–80. https://doi.org/10.21776/ub.industria.2018.007.02.1
  15. Yan, X., Lin, X., Ma, C., Yang, C., & Xing, T. (2024). Hydrophobic C60-modified PVDF membrane with micro-nano structures for mitigating CaSO4 scaling in direct contact membrane distillation (DCMD). Journal of Environmental Chemical Engineering, 12(5), 113605

Last update:

No citation recorded.

Last update: 2025-03-27 09:33:56

No citation recorded.