skip to main content

The Role of Algae in Biofuel Production: Potentials, and Challenges for Sustainable Transportation

The Role of Algae in Biofuel Production: Potentials and Challenges for Sustainable Transportation

Dessy Agustina Sari orcid scopus  -  Universitas Diponegoro and Universitas Singaperbangsa Karawang, Indonesia
*Moh. Djaeni orcid  -  Universitas Diponegoro, Indonesia
Hadiyanto Hadiyanto  -  Universitas Diponegoro, Indonesia
Aji Prasetyaningrum orcid  -  Universitas Diponegoro, Indonesia
Open Access Copyright (c) 2025 TEKNIK

Citation Format:
Abstract

This study aims to explore the potential of algae for sustainable biofuel production by examining their molecular biology and the use of advanced cultivation techniques. As concerns over greenhouse gas emissions and rising transportation energy costs grow, algae offer a promising alternative for fuel derived from both food and non-food sources. This review looks at the main biological pathways involved in making biofuels from algae. It focuses on species diversity, lipid content, and new technologies like photobioreactors and magnetic nanoparticle harvesting. The results showcase noteworthy advancements in biotechnology and genetic engineering that boost algae productivity and fuel yield, while also critically examining the environmental impacts such as CO2 emissions and water use, as well as the economic and policy challenges through a life cycle analysis. Adopting a global perspective, this review emphasizes the role of international collaboration and technology transfer in overcoming barriers. Conclusion: Algae-based biofuels hold considerable potential for reducing CO2 and supporting sustainable transportation, yet scaling up production and lowering costs remain challenges. Future research should focus on improving integrated biorefinery platforms, exploring CO2 capture, and promoting international partnerships.

Fulltext View|Download
Keywords: Algae Biofuel; Bioenergy Policy; Carbon Sequestration; Energy Transition; Genetic Engineering.
Funding: Traction Energy Asia, Universitas Diponegoro, Universitas Negeri Semarang, and Institut Pertanian Bogor

Article Metrics:

  1. Adeniyi, O., Azimov, U., & Burluka, A. (2018). Algae biofuel: Current status and future applications. Renewable and Sustainable Energy Reviews, 90, 316–335
  2. Ajjawi, I., Verruto, J., Aqui, M., Soriaga, L. B., Coppersmith, J., Kwok, K., … Moellering, E. R. (2017). Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nature Biotechnology, 35(7), 647–652
  3. Andersson, V., Heyne, S., Harvey, S., & Berntsson, T. (2020). Integration of algae‐based biofuel production with an oil refinery: Energy and carbon footprint assessment. International Journal of Energy Research, 44(13), 10860–10877
  4. Andriopoulos, V., & Kornaros, M. (2023). LASSO regression with multiple imputations for the selection of key variables affecting the fatty acid profile of Nannochloropsis oculata. Marine Drugs, 21(9), 483
  5. Anwar, A., Sharif, A., Fatima, S., Ahmad, P., Sinha, A., Khan, S. A. R., & Jermsittiparsert, K. (2021). The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach. Journal of Cleaner Production, 288, 125282
  6. Bai, X., Song, H., Lavoie, M., Zhu, K. Y., Su, Y., Ye, H., … Qian, H. (2016). Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Scientific Reports, 6(1)
  7. Batur, İ., Bayram, İ. Ş., & Кочкодан, В. (2019). Impact assessment of supply-side and demand-side policies on energy consumption and CO2 emissions from urban passenger transportation: The case of Istanbul. Journal of Cleaner Production, 219, 391–410
  8. Bettencourt, P., Fulgêncio, C., Grade, M., & Wasserman, J. C. (2021). A comparison between the European and the Brazilian models for management and diagnosis of river basins. Water Policy, 23(1), 58–76
  9. Blockx, J., Verfaillie, A., Thielemans, W., & Muylaert, K. (2018). Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of pH. ACS Sustainable Chemistry & Engineering, 6(9), 11273–11279
  10. Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369
  11. Carruthers, D. N., Godwin, C. M., Hietala, D. C., Lin, X., & Savage, P. E. (2019). Biodiversity improves life cycle sustainability metrics in algal biofuel production. Environmental Science & Technology, 53(15), 9279–9288
  12. Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnology Progress, 22(6), 1490–1506
  13. Chang, J., Hong, J. W., Chae, H., Kim, H. S., Park, K. M., Lee, K. I., & Yoon, H.-S. (2013). Natural production of alkane by an easily harvested freshwater Cyanobacterium, Phormidium autumnale KNUA026. Algae, 28(1), 93–99
  14. Chapman, L. (2007). Transport and climate change: A review. Journal of Transport Geography, 15(5), 354–367
  15. Cheah, W. Y., Sankaran, R., Show, P. L., Tg Nilam Baizura Tg Ibrahim, Chew, K. W., Culaba, A. B., & Chang, J. S. (2020). Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects. Biofuel Research Journal, 7(1), 1115–1127
  16. Chinnasamy, S., Sood, A., Renuka, N., Prasanna, R., Ratha, S. K., Bhaskar, S., … Lewis, D. M. (2014). Ecobiological aspects of algae cultivation in wastewaters for recycling of nutrients and biofuel applications. Biofuels, 5(2), 141–158
  17. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306
  18. Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environmental Science & Technology, 44(5), 1813–1819
  19. Craggs, R. J., Heubeck, S., Lundquist, T., & Benemann, J. R. (2011). Algal biofuels from wastewater treatment high rate algal ponds. Water Science & Technology, 63(4), 660–665
  20. Demırbas, A. (2011). Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. Applied Energy, 88(10), 3541–3547
  21. Driver, T., Bajhaiya, A. K., & Pittman, J. K. (2014). Potential of bioenergy production from microalgae. Current Sustainable/Renewable Energy Reports, 1(3), 94–103
  22. Gerbens-Leenes, P. W., Xu, L., Vries, G. J. D., & Hoekstra, A. Y. (2014). The blue water footprint and land use of biofuels from algae. Water Resources Research, 50(11), 8549–8563
  23. German, L., Schoneveld, G. C., & Pacheco, P. (2011). The social and environmental impacts of biofuel feedstock cultivation: Evidence from multi-site research in the Forest Frontier. Ecology and Society, 16(3), 24
  24. Gressel, J. (2008). Genetic glass ceilings: Transgenics for crop biodiversity. Journal of Commercial Biotechnology, 14(4), 369–370
  25. Griffiths, M. J., & Harrison, S. T. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493–507
  26. Grobbelaar, J. U. (2009). From laboratory to commercial production: A case study of a Spirulina (Arthrospira) facility in Musina, South Africa. Journal of Applied Phycology, 21(5), 523–527
  27. Gultom, S. O., & Hu, B. (2013). Review of microalgae harvesting via co-pelletization with Filamentous fungus. Energies, 6(11), 5921–5939
  28. Hannon, M. J., Gimpel, J., Tran, M., Rasala, B. A., & Mayfield, S. P. (2010). Biofuels from algae: Challenges and potential. Biofuels, 1(5), 763–784
  29. He, J.-F., Zhao, X., Laroche, A., Lu, Z.-X., Liu, H., & Li, Z. (2014). Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers in Plant Science, 5
  30. Ho, S.-H., Chen, C.-Y., Lee, D.-J., & Chang, J.-S. (2011). Perspectives on microalgal CO2-emission mitigation systems—A review. Biotechnology Advances, 29(2), 189–198
  31. Hu, Q., Sommerfeld, M. R., Jarvis, E., Ghirardi, M. L., Posewitz, M. C., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. The Plant Journal, 54(4), 621–639
  32. Jamilatun, S., Rahayu, A., Pradana, Y. S., Budhijanto, Rochmadi, R., & Budiman, A. (2020). Bio-oil characterizations of Spirulina platensis residue (SPR) pyrolysis products for renewable energy development. Key Engineering Materials, 849, 47–52
  33. Kacperska, E., Łukasiewicz, K., & Pietrzak, P. (2021). Use of renewable energy sources in the European union and the Visegrad group countries—Results of cluster analysis. Energies, 14(18), 5680
  34. Khan, M. I., & Shin, J. H. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1)
  35. Khandelwal, A., Chhabra, M., & Lens, P. N. L. (2023). Integration of third generation biofuels with bio-electrochemical systems: Current status and future perspective. Frontiers in Plant Science, 14
  36. Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y., & Oh, H.-M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1), S75–S77
  37. Lehr, F., & Posten, C. (2009). Closed photo-bioreactors as tools for biofuel production. Current Opinion in Biotechnology, 20(3), 280–285
  38. Leow, S., Shoener, B. D., Li, Y., Debellis, J. L., Markham, J., Davis, R., … Guest, J. S. (2018). A unified modeling framework to advance biofuel production from microalgae. Environmental Science & Technology, 52(22), 13591–13599
  39. Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7(3), 975–992
  40. Mendes, R. L., Nobre, B. P., Cardoso, M. T., Pereira, A. P., & Palavra, A. F. (2003). Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chimica Acta, 356, 328–334
  41. Milledge, J. J. (2010). Commercial application of microalgae other than as biofuels: A brief review. Reviews in Environmental Science and Bio/Technology, 10(1), 31–41
  42. Minhas, A. K., Gaur, S., & Adholeya, A. (2023). Influence of light intensity and photoperiod on the pigment and, lipid production of Dunaliella tertiolecta and Nannochloropsis oculata under three different culture medium. Heliyon, 9(2), e12801
  43. Mo, F., & Wang, D. (2019). Environmental sustainability of road transport in OECD countries. Energies, 12(18), 3525
  44. Morales, M., Hélias, A., & Bernard, O. (2019). Optimal integration of microalgae production with photovoltaic panels: Environmental impacts and energy balance. Biotechnology for Biofuels, 12(1)
  45. Mu, D., Min, M., Krohn, B., Mullins, K. A., Ruan, R., & Hill, J. (2014). Life cycle environmental impacts of wastewater-based algal biofuels. Environmental Science & Technology, 48(19), 11696–11704
  46. Mussgnug, J. H., Thomas‐Hall, S., Rupprecht, J., Foo, A., Klassen, V., McDowall, A., … Hankamer, B. (2007). Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnology Journal, 5(6), 802–814
  47. Mussgnug, J. H., Классен, В., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51–56
  48. Pankratz, S., Oyedun, A. O., & Kumar, A. (2019). Development of cost models of algae production in a cold climate using different production systems. Biofuels Bioproducts and Biorefining, 13(5), 1246–1260
  49. Patel, B., Tamburic, B., Zemichael, F. W., Dechatiwongse, P., & Hellgardt, K. (2012). Algal biofuels: A credible prospective? ISRN Renewable Energy, 2012, 1–14
  50. Pore, S. M., Sutkar, P. R., Walekar, L. S., & Dhulap, V. P. (2022). Biofuel generation by macro and micro algae as a renewable energy source: A systematic review. Ecology Environment and Conservation, 28, 140–145
  51. Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486–501
  52. Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467
  53. Reidmiller, D. R., Avery, C. W., Easterling, D. R., Kunkel, K. E., Lewis, K. L. M., Maycock, T. K., & Stewart, B. C. (2018). Impacts, risks, and adaptation in the United States: The fourth national climate assessment, volume II. U.S. Global Change Research Program
  54. Roberts, G. W., Fortier, M. P., Sturm, B., & Stagg-Williams, S. M. (2013). Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion. Energy & Fuels, 27(2), 857–867
  55. Rocha, S. R., Studart, T. D. C., Portela, M. M., Zeleňáková, M., & Filho, R. S. S. (2021). The virtual water flow of crops in Semiarid Ceará, Brazil: The impacts on the state’s water resources management. International Journal of Environmental Impacts Management Mitigation and Recovery, 4(3), 231–242
  56. Rösch, C., Roßmann, M., & Weickert, S. (2018). Microalgae for integrated food and fuel production. GCB Bioenergy, 11(1), 326–334
  57. Ruan, C.-J., Shao, H.-B., & Teixeira Da Silva, J. A. (2012). A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering. Critical Reviews in Biotechnology, 32(1), 1–21
  58. Sari, D. A., Purba, E., & Supriyadi, D. (2018). Kemampuan penyerapan CO2 menggunakan Tetraselmis chuii terhadap intensitas cahaya. Techno, 19(1), 45–50
  59. Schnettler, B., González, A., Avila, R., Miranda, H., Sepúlveda, J., & Denegri, M. (2010). Preference for oils with different types of genetic modifcations in Temuco, Araucanía region, Chile. Ciencia E Investigación Agraria, 37(1), 17–28
  60. Sharma, P., Biswas, P., Tamrakar, S., & Choudhary, Y. K. (2023). Biofuel production, study & characterisation from macro-algae (Azolla pinnata). Brazilian Journal of Science, 2(3), 75–81
  61. Sills, D. L., Paramita, V., Franke, M., Johnson, M. C., Akabas, T. M., Greene, C. H., & Tester, J. W. (2012). Quantitative uncertainty analysis of life cycle assessment for algal biofuel production. Environmental Science & Technology, 47(2), 687–694
  62. Singh, J., & Gu, S. (2010). Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 14(9), 2596–2610
  63. Slade, R., & Bauen, A. (2013). Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53, 29–38
  64. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96
  65. Stephenson, A. L., Kazamia, E., Dennis, J. S., Howe, C. J., Scott, S. A., & Smith, A. G. (2010). Life-cycle assessment of potential algal biodiesel production in the United Kingdom: A comparison of raceways and air-lift tubular bioreactors. Energy & Fuels, 24(7), 4062–4077
  66. Sung, M.-G., Han, J., Lee, B., & Chang, Y. K. (2018). Wavelength shift strategy to enhance lipid productivity of Nannochloropsis gaditana. Biotechnology for Biofuels, 11(1)
  67. Tang, J., Ri-zhao, G., Wang, H., & Liu, Y. (2023). Scenario analysis of transportation carbon emissions in China based on machine learning and deep neural network models. Environmental Research Letters, 18, 064018
  68. Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010). Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy, 2(1), 012701
  69. Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B., & Muylaert, K. (2012). Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresource Technology, 105, 114–119
  70. Villarante, N. R., & Ibarrientos, C. H. (2021). Physicochemical characterization of candlenut (Aleurites moluccana)-derived biodiesel purified with deed eutectic solvents. Journal of Oleo Science, 70(1), 113–123
  71. Villarreal, J. V., Burgués, C., & Rösch, C. (2020). Acceptability of genetically engineered algae biofuels in Europe: Opinions of experts and stakeholders. Biotechnology for Biofuels, 13(1), 1–21
  72. Wang, X. H., Zhou, T. N., Chen, Q. P., Zhao, J. F., Ding, C., & Wang, J. (2018). Burning characteristics of azeotropic binary blended fuel pool fire. Key Engineering Materials, 775, 365–370
  73. Williams, J. (2013). The role of planning in delivering low-carbon urban infrastructure. Environment and Planning B Planning and Design, 40(4), 683–706
  74. Yang, P., Piao, X., & Cai, X. (2022). Water availability for biorefineries in the contiguous United States and the implications for bioenergy production distribution. Environmental Science & Technology, 56(6), 3748–3757
  75. Yilancioglu, K., Tekin, H. O., & Çetiner, S. (2016). Nitrogen source, an important determinant of fatty acid accumulation and profile in Scenedesmus obliquus. Acta Physica Polonica A, 130(1), 428–433
  76. Zhang, B., Wang, L., Riddicka, B. A., Li, R., Able, J. R., Boakye-Boaten, N. A., & Shahbazi, A. (2016). Sustainable production of algal biomass and biofuels using swine wastewater in North Carolina, US. Sustainability, 8(5), 477
  77. Zhou, Y., Schideman, L., Zhang, Y., Yu, G., Wang, Z., & Pham, M. (2011). Resolving bottlenecks in current algal wastewater treatment paradigms: A synergistic combination of low-lipid algal wastewater treatment and hydrothermal liquefaction for large-scale biofuel production. Proceedings of the Water Environment Federation, 2011, 347–361
  78. Zinoviev, S., Müller‐Langer, F., Das, P., Bertero, N. M., Fornasiero, P., Kaltschmitt, M., … Miertus, S. (2010). Next‐generation biofuels: Survey of emerging technologies and sustainability issues. Chemsuschem, 3(10), 1106–1133

Last update:

No citation recorded.

Last update: 2025-03-28 04:24:16

No citation recorded.