BibTex Citation Data :
@article{Transmisi4474, author = {Sigit Rohman dan Achmad Hidayatno dan Ajub Zahra}, title = {APLIKASI PENCIRIAN DENGAN LINEAR PREDICTIVE CODING UNTUK PEMBELAJARAN PENGUCAPAN NAMA HEWAN DALAM BAHASA INGGRIS MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK}, journal = {Transmisi: Jurnal Ilmiah Teknik Elektro}, volume = {14}, number = {4}, year = {2012}, keywords = {}, abstract = { Abstract In this research designed a recognition system for learning the pronunciation of the word animal names in English . Original speech signal sample at 8000 Hz pick out a small portion For voice parameter extraction process used method Linear Predictive Coding ( LPC) to obtain cepstral coefficients . LPC cepstral coefficients are transformed into the frequency domain with Fast Fourier Transform ( FFT). For decision making process of the introduction and use Neural Networks ( NN) back propagation . Testing is done using the data train , according to a database of test data and test data do not fit database. While the networks do a variation of 3, 4 and 5 hidden layers respectively for 1 , 2 and 3 the number of syllables said . Based on the results of testing training data , the recognition rate for each variation of each network the number of syllables showed no difference in test results, the percentage was 99 % for the 1 syllable , 98.5 % for the 2 syllables and 100 % for 3 syllables. Test data suitable for testing the database , the highest recognition rate for type 1 syllable is a network with 4 hidden layers using a variation of the percentage is 85 %, whereas type 2 syllables highest recognition rate using a variation of 5 hidden layers with the correct percentage of 75 % and 81.67 % for type 3 syllables using 5 hidden layers . While the test results do not fit the test database, the highest recognition rate for type 1 syllable is a network with 4 hidden layers using a variation of the percentage is 15.83 % while the type 2 syllables highest recognition rate using a variation of 3 hidden layer s with percentage correct , 20. 83 % and 33.33 % for type 3 syllables using 3 and 4 hidden layers . Keywords : Linear Predictive Coding, Fast Fourier Transform, Neural Network, Backpropagation. }, issn = {2407-6422}, pages = {150--158} doi = {10.12777/transmisi.14.4.150-158}, url = {https://ejournal.undip.ac.id/index.php/transmisi/article/view/4474} }
Refworks Citation Data :
Abstract
In this research designed a recognition system for learning the pronunciation of the word animal names in English. Original speech signal sample at 8000 Hz pick out a small portion For voice parameter extraction process used method Linear Predictive Coding (LPC) to obtain cepstral coefficients. LPC cepstral coefficients are transformed into the frequency domain with Fast Fourier Transform (FFT). For decision making process of the introduction and use Neural Networks (NN) back propagation. Testing is done using the data train, according to a database of test data and test data do not fit database. While the networks do a variation of 3, 4 and 5 hidden layers respectively for 1, 2 and 3 the number of syllables said. Based on the results of testing training data, the recognition rate for each variation of each network the number of syllables showed no difference in test results, the percentage was 99% for the 1 syllable, 98.5% for the 2 syllables and 100% for 3 syllables. Test data suitable for testing the database, the highest recognition rate for type 1 syllable is a network with 4 hidden layers using a variation of the percentage is 85%, whereas type 2 syllables highest recognition rate using a variation of 5 hidden layers with the correct percentage of 75% and 81.67 % for type 3 syllables using 5 hidden layers. While the test results do not fit the test database, the highest recognition rate for type 1 syllable is a network with 4 hidden layers using a variation of the percentage is 15.83% while the type 2 syllables highest recognition rate using a variation of 3 hidden layers with percentage correct, 20.83% and 33.33% for type 3 syllables using 3 and 4 hidden layers.
Article Metrics:
Last update:
Last update: 2024-11-21 02:03:53
Transmisi: Jurnal Ilmiah Teknik Elektro dan Departemen Teknik Elektro, Universitas Diponegoro dan Editor berusaha keras untuk memastikan bahwa tidak ada data, pendapat, atau pernyataan yang salah atau menyesatkan dipublikasikan di jurnal. Dengan cara apa pun, isi artikel dan iklan yang diterbitkan dalam Transmisi: Jurnal Ilmiah Teknik Elektro adalah tanggung jawab tunggal dan eksklusif masing-masing penulis dan pengiklan.
Formulir Transfer Hak Cipta dapat diunduh di sini: [Formulir Transfer Hak Cipta Transmisi]. Formulir hak cipta harus ditandatangani dan dikirim ke Editor dalam bentuk surat asli, dokumen pindaian atau faks:
Dr. Munawar Riyadi (Ketua Editor)Departemen Teknik Elektro, Universitas Diponegoro, IndonesiaJl. Prof. Sudharto, Tembalang, Semarang 50275 IndonesiaTelepon/Facs: 62-24-7460057Email: transmisi@elektro.undip.ac.id