BibTex Citation Data :
@article{Transmisi59011, author = {Salsabila Lesmarna dan Farrikh Alzami dan Ifan Rizqa dan Abu Salam dan Diana Aqmala dan Rama Megantara dan Ricardus Pramunendar}, title = {DEVELOPMENT OF TIME-SERIES-BASED MLOPS ARCHITECTURE FOR PREDICTING SALES QUANTITY IN MICRO, SMALL, AND MEDIUM ENTERPRISES (MSMES)}, journal = {Transmisi: Jurnal Ilmiah Teknik Elektro}, volume = {26}, number = {2}, year = {2024}, keywords = {MLOps, Hopsworks, Prediction, Sales, MSMEs}, abstract = { Micro, Small, and Medium Enterprises (MSMEs) constitute a significant portion of the economy in many developing countries, playing a vital role in employment generation and economic growth. Sales performance is a critical factor for MSMEs, influenced by various internal and external factors. Time-series analysis offers a valuable tool to predict sales quantities by analyzing historical data and identifying patterns and trends. In this context, the SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogenous Variables) model emerges as a suitable method to forecast future sales, leveraging both historical data and external variables. This research explores the synergy between time-series analysis, specifically SARIMAX modeling, and MLOps (Machine Learning Operations). Finally, this research aims to provide a framework for the practical application of MLOps to enhance sales forecasting and decision-making processes within MSMEs, fostering their growth and sustainability in a competitive market landscape. }, issn = {2407-6422}, pages = {64--69} doi = {10.14710/transmisi.26.2.64-69}, url = {https://ejournal.undip.ac.id/index.php/transmisi/article/view/59011} }
Refworks Citation Data :
Micro, Small, and Medium Enterprises (MSMEs) constitute a significant portion of the economy in many developing countries, playing a vital role in employment generation and economic growth. Sales performance is a critical factor for MSMEs, influenced by various internal and external factors. Time-series analysis offers a valuable tool to predict sales quantities by analyzing historical data and identifying patterns and trends. In this context, the SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogenous Variables) model emerges as a suitable method to forecast future sales, leveraging both historical data and external variables. This research explores the synergy between time-series analysis, specifically SARIMAX modeling, and MLOps (Machine Learning Operations). Finally, this research aims to provide a framework for the practical application of MLOps to enhance sales forecasting and decision-making processes within MSMEs, fostering their growth and sustainability in a competitive market landscape.
Article Metrics:
Last update:
Last update: 2024-12-26 17:25:19
Transmisi: Jurnal Ilmiah Teknik Elektro dan Departemen Teknik Elektro, Universitas Diponegoro dan Editor berusaha keras untuk memastikan bahwa tidak ada data, pendapat, atau pernyataan yang salah atau menyesatkan dipublikasikan di jurnal. Dengan cara apa pun, isi artikel dan iklan yang diterbitkan dalam Transmisi: Jurnal Ilmiah Teknik Elektro adalah tanggung jawab tunggal dan eksklusif masing-masing penulis dan pengiklan.
Formulir Transfer Hak Cipta dapat diunduh di sini: [Formulir Transfer Hak Cipta Transmisi]. Formulir hak cipta harus ditandatangani dan dikirim ke Editor dalam bentuk surat asli, dokumen pindaian atau faks:
Dr. Munawar Riyadi (Ketua Editor)Departemen Teknik Elektro, Universitas Diponegoro, IndonesiaJl. Prof. Sudharto, Tembalang, Semarang 50275 IndonesiaTelepon/Facs: 62-24-7460057Email: transmisi@elektro.undip.ac.id