skip to main content

DEVELOPMENT OF TIME-SERIES-BASED MLOPS ARCHITECTURE FOR PREDICTING SALES QUANTITY IN MICRO, SMALL, AND MEDIUM ENTERPRISES (MSMES)

Salsabila Putri Lesmarna  -  Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
*Farrikh Alzami  -  Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
Ifan Rizqa  -  Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
Abu Salam  -  Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
Diana Aqmala  -  Fakultas Ekonomi dan Bisnis, Universitas Dian Nuswantoro, Indonesia
Rama Aria Megantara  -  Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
Ricardus Anggi Pramunendar  -  Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
Dikirim: 20 Okt 2023; Diterbitkan: 27 Mei 2024.
Akses Terbuka Copyright (c) 2024 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari

Micro, Small, and Medium Enterprises (MSMEs) constitute a significant portion of the economy in many developing countries, playing a vital role in employment generation and economic growth. Sales performance is a critical factor for MSMEs, influenced by various internal and external factors. Time-series analysis offers a valuable tool to predict sales quantities by analyzing historical data and identifying patterns and trends. In this context, the SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogenous Variables) model emerges as a suitable method to forecast future sales, leveraging both historical data and external variables. This research explores the synergy between time-series analysis, specifically SARIMAX modeling, and MLOps (Machine Learning Operations). Finally, this research aims to provide a framework for the practical application of MLOps to enhance sales forecasting and decision-making processes within MSMEs, fostering their growth and sustainability in a competitive market landscape.

Fulltext View|Download
Kata Kunci: MLOps, Hopsworks, Prediction, Sales, MSMEs

Article Metrics:

  1. O. S. Taiwo, A. Hakan, and Ç. Savaş, “Modeling the Impacts of MSMEs’ Contributions to GDP and their Constraints on Unemployment: The Case of African’s Most Populous Country,” Stud. Bus. Econ., vol. 17, no. 1, pp. 154–170, Apr. 2022, doi: 10.2478/sbe-2022-0011
  2. Jhon Montalvo-Garcia, Juan Bernardo Quintero, and Bell Manrique-Losada, Crisp-dm/smes: A data analytics methodology for non-profit smes, vol. 1041. London: Springer, 2020
  3. I. R. Riana and L. Nafiati, “Pengaruh Persepsi Etika Bisnis Islam, Persepsi Kualitas Produk, dan Persepsi Kualitas Pelayanan terhadap Tingkat Penjualan UMKM di Kota Yogyakarta,” J. REKSA Rekayasa Keuang. Syariah Dan Audit, vol. 8, no. 1, p. 59, Feb. 2021, doi: 10.12928/j.reksa.v8i1.3871
  4. F. Cuandra, “Analisis Tingkat Penjualan Melalui Faktor Internal Maupun Faktor Eksternal terhadap UMKM Kuliner Kota Batam,” J. Progres Ekon. Pembang. JPEP, vol. 6, no. 2, p. 123, Aug. 2021, doi: 10.33772/jpep.v6i2.19794
  5. X. Qi, K. Hou, T. Liu, Z. Yu, S. Hu, and W. Ou, “From Known to Unknown: Knowledge-guided Transformer for Time-Series Sales Forecasting in Alibaba.” arXiv, Sep. 22, 2021. Accessed: Sep. 26, 2023. [Online]. Available: http://arxiv.org/abs/2109.08381
  6. H. Ge and L. Fang, “Prediction Model of Physical Goods Sales based on Time Series Analysis,” Front. Bus. Econ. Manag., vol. 5, no. 2, pp. 90–97, Sep. 2022, doi: 10.54097/fbem.v5i2.1670
  7. S. Wang and Y. Yang, “M-GAN-XGBOOST model for sales prediction and precision marketing strategy making of each product in online stores,” Data Technol. Appl., vol. 55, no. 5, pp. 749–770, Oct. 2021, doi: 10.1108/DTA-11-2020-0286
  8. N. Kumar, V. Jain, K. Joshi, and I. Dawar, “Prediction of epidemic disease cases using ARIMA and SARIMAX models,” in 2023 Sixth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU), Riyadh, Saudi Arabia: IEEE, Mar. 2023, pp. 201–205. doi: 10.1109/WiDS-PSU57071.2023.00049
  9. J. Au, J. S. Jr, B. Spanswick, and J. Santerre, “Forecasting Power Consumption in Pennsylvania During the COVID-19 Pandemic: A SARIMAX Model with External COVID-19 and Unemployment Variables,” vol. 3, no. 2, 2020
  10. W. Skaf, A. Tosayeva, and D. T. Várkonyi, “Towards Automatic Forecasting: Evaluation of Time-Series Forecasting Models for Chickenpox Cases Estimation in Hungary.” arXiv, Oct. 04, 2022. Accessed: Oct. 02, 2023. [Online]. Available: http://arxiv.org/abs/2209.14129
  11. S. Sahoo, “A Comprehensive Analysis and prognostication of COVID-19 (SARS-Cov-2) Outbreak situation in India,” Open Science Framework, preprint, Jun. 2021. doi: 10.31219/osf.io/v9n7s
  12. D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine Learning Operations (MLOps): Overview, Definition, and Architecture,” IEEE Access, vol. 11, pp. 31866–31879, 2023, doi: 10.1109/ACCESS.2023.3262138
  13. T. Masood and P. Sonntag, “Industry 4.0: Adoption challenges and benefits for SMEs,” Comput. Ind., vol. 121, p. 103261, Oct. 2020, doi: 10.1016/j.compind.2020.103261
  14. B. M. A. Matsui and D. H. Goya, “MLOps: a guide to its adoption in the context of responsible AI,” in Proceedings of the 1st Workshop on Software Engineering for Responsible AI, Pittsburgh Pennsylvania: ACM, May 2022, pp. 45–49. doi: 10.1145/3526073.3527591
  15. L. Faubel et al., “Towards an MLOps Architecture for XAI in Industrial Applications,” 2023, doi: 10.48550/ARXIV.2309.12756
  16. A. Singla, “Machine Learning Operations (MLOps): Challenges and Strategies,” J. Knowl. Learn. Sci. Technol. ISSN 2959-6386 Online, vol. 2, no. 3, pp. 333–340, Aug. 2023, doi: 10.60087/jklst.vol2.n3.p340
  17. D. H. Hagos et al., “Scalable Artificial Intelligence for Earth Observation Data Using Hopsworks,” Remote Sens., vol. 14, no. 8, p. 1889, Apr. 2022, doi: 10.3390/rs14081889
  18. A. A. Ormenis, “Horizontally Scalable ML Pipelines with a Feature Store,” 2019
  19. A. M. Elshewey et al., “A Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate Dataset,” Sustainability, vol. 15, no. 1, p. 757, Dec. 2022, doi: 10.3390/su15010757
  20. T. Andrianajaina, D. T. Razafimahefa, R. Rakotoarijaina, and C. G. Haba, “Grid Search for SARIMAX Parameters for Photovoltaic Time Series Modeling,” Glob. J. Energy Technol. Res. Updat., vol. 9, pp. 87–96, Dec. 2022, doi: 10.15377/2409-5818.2022.09.7
  21. M. P. Keerthi, G. S. Reddy, V. S. Raghava, and K. B. Reddy, “Streamlit Interface for Multiple Disease Diagnosis,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 11, no. 2, pp. 1159–1164, Feb. 2023, doi: 10.22214/ijraset.2023.49166
  22. Dr. J. N. Padmaja, A. V. Kanth, P. V. Reddy, and B. A. Rao, “Web Application for Emotion-Based Music Player using Streamlit,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 11, no. 2, pp. 342–347, Feb. 2023, doi: 10.22214/ijraset.2023.49019
  23. A. Ait, J. L. C. Izquierdo, and J. Cabot, “HFCommunity: A Tool to Analyze the Hugging Face Hub Community,” in 2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Taipa, Macao: IEEE, Mar. 2023, pp. 728–732. doi: 10.1109/SANER56733.2023.00080

Last update:

No citation recorded.

Last update: 2024-11-21 21:17:46

No citation recorded.