skip to main content

KLASIFIKASI SINYAL WICARA UNTUK GERAKAN KURSI RODA MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION

Arief Wisaksono  -  Fakultas Sains dan Teknologi, Universitas Muhammadiyah Sidoarjo, Indonesia
*Hindarto Hindarto  -  Fakultas Sains dan Teknologi, Universitas Muhammadiyah Sidoarjo, Indonesia
Ade Efiyanti  -  Fakultas Sains dan Teknologi, Universitas Muhammadiyah Sidoarjo, Indonesia
Ahmad Ahfas  -  Fakultas Sains dan Teknologi, Universitas Muhammadiyah Sidoarjo, Indonesia
Dikirim: 6 Des 2023; Diterbitkan: 30 Jan 2024.
Akses Terbuka Copyright (c) 2024 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari
Kursi Roda yang dikendalikan oleh sinyal wicara adalah teknologi bantuan yang inovatif dirancang untuk meningkatkan mobilitas dan kemandirian penyandang disabilitas. Penelitian ini bertujuan untuk mengkalsifikasi sinyal wicara yang digunakan untuk Gerakan kursi roda yang dapat dioperasikan menggunakan perintah suara. Ada lima jenis data perintah wicara yang harus dikenali yaitu maju, mundur, kiri, kanan, dan berhenti. Terdapat beberapa ekstrasi fitur yang digunakan, yaitu menggunakan metode FFT dengan mengambil nilai energi rata-rata, dan menggunakan metode DWT dengan mengambil nilai subband energi dan nilai zero crossing threshold. Proses klasifikasi yang digunakan menggunakan metode Jaringan Syaraf Tiruan Backpropagation. Penelitian yang diujikan menggunakan metode Jringn Syaraf Tiruan menghasilkan tingkat akurasi yang lebih baik dengan menggunakan hidden layer 2 dan hidden layer 3. Hasil akurasi yang didapatkan sebesar 100% untuk proses pelatihan dan 100% untuk proses pengujian
Fulltext View|Download
Kata Kunci: Sinyal Wicara, Backpropagation, FFT, DWT

Article Metrics:

  1. D. S. Kulkarni, “A Review of Speech Signal Enhancement Techniques,” no. August, 2019, doi: 10.5120/ijca2016909507
  2. E. Science, “Signal acquisition system based on wireless transmission for environmental sound monitoring system Signal acquisition system based on wireless transmission for environmental sound monitoring system”, doi: 10.1088/1755-1315/969/1/012015
  3. J. Kim, G. Bailly, C. Davis, J. Kim, G. Bailly, and C. Davis, “Introduction to the special issue on auditory-visual expressive speech and gesture in humans and machines To cite this version : HAL Id : hal-01821001,” 2018
  4. T. Hueber et al., “Statistical Mapping between Articulatory and Acoustic Data , Application to Silent Speech Interface and Visual Articulatory Feedback”
  5. D. Ahmad, “Voice based virtual assistant,” no. July, 2023, doi: 10.13140/RG.2.2.32116.12163
  6. A. Vasilateanu and R. Ene, “Call-Center Virtual Assistant Using Natural Language Processing and Speech Recognition Call-Center Virtual Assistant Using Natural Language Processing and Speech Recognition,” no. December 2018, 2020, doi: 10.33150/JITDETS-2.2.3
  7. H. B. Pasandi and H. B. Pasandi, “Evaluation of Automated Speech Recognition Systems for Conversational Speech : A Linguistic Perspective”
  8. M. I. Malik, T. Bashir, and O. F. Khan, “Voice Controlled Wheel Chair System,” vol. 6, no. 6, pp. 411–419, 2017
  9. H. Krishna, S. Emani, R. Manapaka, and S. P. V. S. Rao, “VOICE CONTROLLED AND JOYSTICK BASED WHEEL CHAIR FOR DIFFERENTLY ABLED PEOPLE,” no. 06, pp. 3111–3114, 2021
  10. C. Bartolein and A. Wagner, “Easing Wheelchair Control by Gaze-based Estimation of Intended Motion,” pp. 9162–9167, 2008
  11. M. S. Arsha, A. R. Raj, S. R. Pooja, R. Manoj, S. A. Sabitha, and S. Mohan, “Voice Controlled Wheelchair,” no. 9, pp. 1–4, 2020
  12. M. Bakouri et al., “Steering a Robotic Wheelchair Based on Voice Recognition System Using Convolutional Neural Networks,” Electron., vol. 11, no. 1, pp. 1–17, 2022, doi: 10.3390/electronics11010168
  13. M. Bakouri, “Development of Voice Control Algorithm for Robotic Wheelchair Using MIN and LSTM Models,” Comput. Mater. Contin., vol. 73, no. 2, pp. 2441–2456, 2022, doi: 10.32604/cmc.2022.025106
  14. M. S. I. Sharifuddin, S. Nordin, and A. M. Ali, “Comparison of CNNs and SVM for voice control wheelchair,” IAES Int. J. Artif. Intell., vol. 9, no. 3, pp. 387–393, 2020, doi: 10.11591/ijai.v9.i3.pp387-393
  15. M. M. Abdulghani, K. M. Al-Aubidy, M. M. Ali, and Q. J. Hamarsheh, “Wheelchair neuro fuzzy control and tracking system based on voice recognition,” Sensors (Switzerland), vol. 20, no. 10, 2020, doi: 10.3390/s20102872
  16. G. Kaur, M. Srivastava, and A. Kumar, “Integrated Speaker and Speech Recognition for Wheel Chair Movement Using Integrated Speaker and Speech Recognition for Wheel Chair Movement using Artificial Intelligence,” no. November 2019, 2018, doi: 10.31449/inf.v42i4.2003
  17. Q. P. Ha, T. H. Tran, and G. Dissanayake, “A wavelet- and neural network-based voice interface system for wheelchair control A wavelet- and neural network-based voice interface system for wheelchair control,” no. December, pp. 48–65, 2013, doi: 10.1504/IJISTA.2005.007307
  18. D. T. Kusuma, “Fast Fourier Transform ( FFT ) Dalam Transformasi Sinyal Frekuensi Suara Sebagai Upaya Perolehan Average Energy ( AE ) Musik,” vol. 14, no. 1, pp. 28–35, 2021
  19. S. Pittner and S. Kamarthi, “Coefficients for Pattern Recognition Tasks,” no. January 1999, 2015, doi: 10.1109/34.745739
  20. O. Bilokon and I. Denkov, “Backpropagation artificial neural network learning algorithm process impact based on hyperparameters,” vol. 14, no. 8, pp. 1–15, 2021

Last update:

No citation recorded.

Last update: 2025-01-07 01:29:56

No citation recorded.